Toggle Accessibility Tools

All Published Research and Evaluation on CMP

A large body of literature exists that focuses on or is related to the Connected Mathematics Project. Here, you will find articles on CMP that we have compiled over the past thirty years. These include research, evaluation and descriptions from books, book chapters, dissertations, research articles, reports, conference proceedings, and essays. Some of the topics are:

  • student learning in CMP classrooms
  • teacher's knowledge in CMP classrooms
  • CMP classrooms as research sites
  • implementation strategies of CMP
  • longitudinal effects of CMP in high school math classes
  • students algebraic understanding
  • student proportional reasoning
  • student achievement
  • student conceptual and procedural reasoning and understanding
  • professional development and teacher collaboration
  • comparative studies on different aspects of mathematics curricula
  • the CMP philosophy and design, development, field testing and evaluation process for CMP

This list is based on thorough reviews of the literature and updated periodically. Many of these readings are available online or through your local library system. A good start is to paste the title of the publication into your search engine. Please contact us if you have a suggestion for a reading that is not on the list, or if you need assistance locating a reading.

Adams, R. L. (2005). Standards-based accountability: Improving achievement for all students through standards based mathematics instruction. (Doctoral dissertation). Retrieved from Dissertation Abstracts International, 66(6). (ProQuest ID No. 932378841)

ABSTRACT: The purpose of this study was to conduct evaluation research on the professional development intervention implemented to address the effectiveness of standards-based instruction in improving the mathematic achievement of all student subgroups in Yolo County schools. The question addressed in this study was "Does standards-based instruction in mathematics, coupled with professional development on the standards-based content of California State Board of Education-approved text books, lead to increases in student achievement and high school graduation rates for all subgroups in Yolo County schools?"

The Yolo County Office of Education (YCOE) university partnership designed the professional development intervention for teachers delivering math at grade levels 5th through algebra I. Twelve teachers (treatment group) participated in 40-hour institutes; follow-up sessions, and data gathering to measure the effectiveness of the training and support. Ten teachers (control group) recruited as 2005 institute participants simultaneously gathered like data.

Twelve schools participated in the study. The teacher index ranges from 0.00 teachers trained in standards-based mathematics instruction to 0.50 with a mean of 0.19 indicating that the schools hadn't implemented school-wide professional development.

There was a significant difference between the treatment group scores on the post-survey and the control group scores (p = .011) (effect size > 1.0). The treatment group results indicate that the treatment group's beliefs on standards based instruction shifted significantly into the high-reform range after the intervention.

Curriculum calibration indicates that the use of the textbook as the main teaching resource did not ensure that the instruction was on grade-level over 75% of the time. The control group used the textbook as the main teaching resource 30% of the time compared to 55% by the treatment group, yet taught on grade-level more often then the treatment group.

The implications of this program evaluation point to continued organizational improvement through reducing gaps in: content knowledge, motivation, and organization support. Based on the research cited, and the practical implications from the intervention piloted in the Yolo County schools, the county partnership must continue to build systems of support that embrace standards-based mathematic instruction.

Read Standards-based accountability

American Association for the Advancement of Science: Project 2061 (2000). Middle grades mathematics textbooks: A benchmarks-based evaluation. Evaluation report prepared by the American Association for the Advancement of Science.

Read Evaluation Report

Banilower, E. R., Smith, P. S., Weiss, I. R., Malzahn, K. A., Campbell, K. M., & Weis, A. M. (2013). Report of the 2012 National Survey of Science and Mathematics Education. Chapel Hill, NC: Horizon Research, Inc.

Read Report

Bay, J. M. (1999). Middle school mathematics curriculum implementation: The dynamics of change as teachers introduce and use standards-based curricula. (Doctoral dissertation). Retrieved from Dissertation Abstracts International, 60(12). (ProQuest ID No. 730586091)

ABSTRACT: Two case studies of school districts were developed to study the district-level constraints and considerations during adoption of standards-based middle school mathematics curricula. In addition, the nature of implementation within classrooms was described through six teacher case studies. The two school districts were in their third year of full implementation of a curricula, with one school district implementing the Connected Mathematics Project and the other MATH Thematics. Data collected included interviews, surveys, and classroom observations. Factors influencing teacher decision-making and district-level decision-making were analyzed.

Several themes emerged related to the district-level issues of implementation. First, teacher leadership and/or participation in the professional development and district decision-making throughout the implementation had an impact on the nature of the teachers' perceptions of the need for change. Those who were involved in professional development or provided leadership in the district had a stronger commitment to the implementation. Teacher turnover constrained the level of implementation in the classroom and the level of interaction among teachers. Perceptions of parents, expectations for students, and state/national assessments were important considerations as districts selected and implemented their curriculum.

Successful implementation of standards-based curriculum in the classroom appeared to be related to several factors. First, the extent to which teachers were involved in the process of implementation, including choosing the curriculum and participating in professional development, influenced the degree to which their classrooms were aligned with recommendations from the curricula and the NCTM Standards (1989, 1991, 1995). Collaborative relationships that were developed during the selection and first year of implementation continued to function productively in the third year of implementation, which happened to be the first year the districts were not participating in any externally-sponsored professional development. All teachers were concerned with the level of skill development that students needed beyond what was provided in the curriculum and made adjustments accordingly.

Bay, J. M., Beem, J. K., Reys, R. E., Papick, I., & Barnes, D. E. (1999). Student reactions to standards-based math-ematics curricula: The interplay between curriculum, teachers, and students. School Science and Mathematics, 99(4), 182–188.

ABSTRACT: As standards-based mathematics curricula are used to guide learning, it is important to capture not just data on achievement but data on the way in which students respond to and interact in a standards-based instructional setting. In this study, sixth and seventh graders reacted through letters to using one of two standards-based curriculum projects ("Connected Mathematics Project or Six Through Eight Mathematics. Letters were analyzed by class, by teacher, and by curriculum project. Findings suggest that across classrooms students were positive toward applications, hands-on activities, and working collaboratively. The level of students’ enthusiasm for the new curricula varied much from class to class, further documenting the critical role teachers play in influencing students’ perceptions of their mathematics learning experiences. The results illustrate that, while these curricula contain rich materials and hold much promise, especially in terms of their activities and applications, their success with students is dependent on the teacher.

Read Article

Bay, J. M., Reys, B. J., & Reys, R. E. (1999). The top 10 elements that must be in place to implement standards-based mathematics curricula. Phi Delta Kappan, 80(7), 503 506.

ABSTRACT: Teachers' work with four National Science Foundation-funded curricula in the Missouri Middle-School Mathematics Project has disclosed 10 critical implementation elements: administrative support, opportunities for study, curriculum sampling, daily planning, interaction with experts, collaboration with colleagues, incorporation of new assessments, student adjustment time, and planning for transition.

Read The Top 10 Elements

Ben-Chaim, D., Fey, J., Fitzgerald, W., Benedetto, C., & Miller, J. (1997a). Development of Proportional Reasoning in a Problem-Based Middle School Curriculum. Paper presented at the Annual Meeting of the American Educational Research Association. Chicago, IL.

ABSTRACT: Contemporary constructivist views of mathematical learning have encouraged curriculum developers to devise instructional materials that help students build their own understanding and procedures for doing rational number computations, solving proportions, and applying those skills to real and whimsical problems. The Connected Mathematics Project (CMP) curriculum supports construction of rational number knowledge by presenting students with a series of units based on contextual problems that require proportional reasoning and computation. The goal of this study was to describe the character and effectiveness of proportional reasoning by students with different curricular experiences as they face problems in which ratio and proportion ideas are appropriate and useful. Performance task papers and follow-up interviews with selected students from the study indicated that, in addition to a greater frequency of correct answers and reasoning compared with control group students, CMP students appeared to have developed greater ability to articulate their thinking. Students from CMP classes had a generally broader and more flexible repertoire of strategies available for problem solving. The results suggest that problem-based curriculum and instruction can be effective in helping students construct effective personal understanding and skill in one of the core strands of middle grade mathematics.

Read Article

Ben-Chaim, D., Fey, J., Fitzgerald, W., Benedetto, C., & Miller, J. (1998). Proportional reasoning among 7th grade students with different curricular experiences. Educational Studies in Mathematics, 36(3), 247-273.

ABSTRACT: Contextual problems involving rational numbers and proportional reasoning were presented to seventh grade students with different curricular experiences. There is strong evidence that students in reform curricula, who are encouraged to construct their own conceptual and procedural knowledge of proportionality through collaborative problem-solving activities, perform better than students with more traditional, teacher-directed instructional experiences. Seventh grade students, especially those who study the new curricula, are capable of developing their own repertoire of sense-making tools to help them to produce creative solutions and explanations. This is demonstrated through analysis of solution strategies applied by students to a variety of rate problems.

Read Article

Bieda, K. N., Ji, X., Drwencke, J., & Picard, A. (2014). Reasoning-and-proving opportunities in elementary mathematics textbooks. International Journal of Educational Research, 64, 71–80. doi:10.1016/j.ijer.2013.06.005

ABSTRACT: Over the past two decades, standards documents have emphasized the importance of developing students’ abilities to generate and critique mathematical arguments across all grade levels. However, little is known about the opportunities elementary textbooks provide for students to learn mathematical argumentation. We analyzed seven upper elementary (ages 9–11) mathematics textbooks published in the U.S., focusing specifically on reasoning-and-proving opportunities in written tasks, and found that the average percentage of such tasks was 3.7%. Further, analyses of the task purpose and type of justification warranted revealed distinctions between the text materials in terms of the kinds of reasoning-and-proving activities prompted and the placement of tasks in the lesson sections. Specifically, textbooks developed based on research and written to align with curriculum and instruction standards were more likely to have reasoning-and-proving tasks within the narrative and student exercise sections than other texts. We discuss implications for the opportunities to learn reasoning-and-proving in elementary classrooms.

Read Article

Bieda, Kristen N., Bowers, David, & Kuchle, Valentin A.B. (2019). The Genre(s) of Argumentation in School Mathematics. Michigan Reading Journal. (41)

Bledsoe, A. M. (2002). Implementing the Connected Mathematics Project: The interaction between student rational number understanding and classroom mathematical practices. (Doctoral dissertation). Retrieved from Dissertation Abstracts International, 63(12). (ProQuest ID No. 765115471)

ABSTRACT: The Research Advisory Council (RAC, 1991) of the National Council of Teachers of Mathematics (NCTM) called for research on the effects of Standards -based (NCTM, 1989, 1991, 2000) curricula. Following a qualitative design, this dissertation study provides insight into what it means to know and do mathematics in one seventh-grade classroom in which one such curriculum was implemented. More specifically, this study provides a thick description of the teaching and learning of rational number concepts in a classroom where the Bits and Pieces I unit (Lappan, Fey, Fitzgerald, Friel, & Phillips, 1997) from the Connected Mathematics Project (CMP) was used.

Through the lens of the Emergent Perspective (Cobb & Yackel, 1996), this study investigates the relationship between students' initial and developing understandings and the evolving classroom mathematical practices. Results indicate that students' rational number understandings and the teacher's proactive role contributed to the establishment of the classroom mathematical practices. These mathematical practices serve to document the development of the collective understandings as the students engaged in activities from Bits and Pieces I (Lappan et al., 1997). Findings suggest that students did make significant growth in their rational number understandings as a consequence of engaging in these activities and participating in these mathematical practices. In particular, results indicate that participation in conceptually-based mathematical practices provided greater opportunities for students' to advance in their rational number understandings than participation in those that were procedurally-based. In fact, participation in procedurally-based mathematical practices actually constrained some students' advance in their rational number understandings.

Bouck, M., Keusch, T., & Fitzgerald, W. (1996). Developing as a teacher of mathematics. The Mathematics Teacher, 89(9), 769-73.

ABSTRACT: This study investigated the impact of mathematics curriculum (standards based vs. traditional) on the performance of sixth and seventh grade students with disabilities on multiple-choice and open-ended assessments aligned to one state’s number and operations and algebra standards. It also sought to understand factors affecting student performance on assessments: ability status (students with and without disabilities), curriculum (standards based vs. traditional), and assessment type (multiple choice vs. open ended). In all, 146 sixth grade students and 149 seventh grade students participated in the study. A linear mixed model for each grade revealed students with disabilities did not perform better in either curriculum. Furthermore, curriculum type was not a significant factor affecting student performance; however, ability status, time, and assessment type were. The implications of these results are discussed.

Read Article

Bray, M. S. (2005). Achievement of eighth grade students in mathematics after completing three years of the Connected Mathematics Project. (Doctoral dissertation). Retrieved from Dissertation Abstracts International, 66(11). (ProQuest ID No. 1031063341)

ABSTRACT: The purpose of this study was to examine the three-year effect of the Connected Mathematics Project (CMP) on the mathematics achievement of middle school students in a southeastern Tennessee public school district. This was accomplished by (1) comparing the mathematics achievement of eighth graders who have completed three years of CMP with their mathematics achievement after completing one and two years of CMP; (2) comparing the achievement of male and female students during the same period of time; and (3) comparing the mathematics achievement of historically underrepresented students after completing one, two, and three years of CMP.

In order to provide for a richer analysis of the CMP experience, the overall design employed quantitative and qualitative methodologies. The quantitative section of the study examined the mathematical achievement of almost 2,900 of the 2001-2002 eighth graders, over 3,000 of the 2000-2001 seventh graders, and over 3,100 1999- 2000 sixth graders as evidenced by their Tennessee Comprehensive Assessment Program (TCAP) test scores. The qualitative segment of the study explored the experiences of the textbook adoption committee members, teachers, administrators, and parents.

Using the Tennessee Comprehensive Assessment Program mathematics total battery test score as the dependent variable, there was no significant difference between the mathematics achievement of students completing one or two years of CMP. However, there was a significant difference in the mathematics achievement between students completing three years of CMP when compared to their mathematics scores after one and two years. There was also a significant difference between male and female students after completing one and two years of CMP but no significant difference was detected after the completion of three years. Though there was a significant difference revealed in the achievement between African Americans and Non African Americans after completing one, two, and three years of CMP the gap closed slightly after completing three years. Overall, CMP students performed better on the state achievement assessment the longer they were being instructed using the standards based curriculum.

Read Article

Brucker, E. L. (2008). Journey into a Standards-based mathematics classroom. Mathematics Teaching in the Middle School, 14(5), 300-303.

ABSTRACT: A standards-based approach to mathematics involves using story problems to allow students to investigate a solution. This approach emphasizes an understanding of concepts and processes and assumes mastery of basic computation skills. This article will encourage teachers to continue teaching standards-based mathematics and to take advantage of available training to produce students who are better prepared in mathematics and who enjoy the process.

Read Article

Burdell, C., & Smith III, J. P. (2001). “The math is different, but I can deal”: Studying students’ experiences in a reform-based mathematics curriculum. Paper presented at the annual meeting of the American Educational Research Association, Seattle, WA.

ABSTRACT: The research reported in this paper describes the mathematical experiences of 9 students who moved from a traditional mathematics program in junior high school to a high school mathematics program structured by current reforms in curriculum and teaching. We will refer to the high school site of this work as Logan High (though the name is fictitious). Logan has for some years implemented the Core-Plus Mathematics Project materials for most of its grade 9–12 students, including some (but not all) students who come out of the “advanced” mathematics track in the junior high school. We recruited 24 Logan student volunteers starting in January 2000 and have tracked these students in their mathematics work for 2.5 semesters.

We report on the experiences of 9 of these students, drawing on a maximum of 3 semesters of mathematics coursework (Spring 2000, Fall 200, and Spring 2001). We have analyzed their mathematical experiences along 4 dimensions: (1) performance in mathematics, (2) disposition towards the subject, (3) approach to learning the subject, and (4) differences students see between traditional and Core-Plus mathematics curricula and teaching. All of our 9 students reported differences between their past and present mathematics programs as they moved into Core-Plus, but in only 2 cases was there any significant change in performance across the curricular shift.

Read Article

Cady, J. A., Hodges, T. E., & Collins, R. L. (2015). A comparison of textbooks’ presentation of fractions. School Science & Mathematics, 115(3), 105–116. doi:10.1111/ssm.12108.

ABSTRACT: In the United States, fractions are an important part of the middle school curriculum, yet many middle school students struggle with fraction concepts. Teachers also have difficulty with the conceptual understanding needed to teach fractions and rely on textbooks when making instructional decisions. This reliance on textbooks, the idea that teaching and learning of fractions is a complex process, and that fraction understanding is the foundation for later topics such as proportionality, algebra, and probability, makes it important to examine the variation in presentation of fraction concepts in U.S. textbooks, especially the difference between traditional and standards-based curricula. The purpose of this study is to determine if differences exist in the presentation of fractions in conventional and standards-based textbooks and how these differences align with the recommendations of National Council of Teachers of Mathematics, Common Core State Standards, and the research on the teaching and learning of fractions.

Read Article

Cai, J. (2014). Searching for evidence of curricular effect on the teaching and learning of mathematics: Some insights from the LieCal project. Mathematics Education Research Journal, 26, 811-831.

ABSTRACT: Drawing on evidence from the Longitudinal Investigation of the Effect of Curriculum on Algebra Learning (LieCal) Project, issues related to mathematics curriculum reform and student learning are discussed. The LieCal Project was designed to longitudinally investigate the impact of a reform mathematics curriculum called the Connected Mathematics Project (CMP) in the USA on teachers' teaching and students' learning. Using a three-level conceptualization of curriculum (intended, implemented, and attained), a variety of evidence from the LieCal Project is presented to show the impact of mathematics curriculum reform on teachers' teaching and students' learning. This paper synthesizes findings from the two longitudinal studies spanning 7 years of the LieCAl Project both to show the kind of impact curriculum has on teachers' teaching and students' learning and to suggest powerful but feasible ways researchers can investigate curriculum effect on both teaching and learning.

Read Article

Cai, J. (2015). Curriculum reform and mathematics learning: Evidence from two longitudinal studies. In S. J. Cho (Ed.), Selected regular lectures from the 12th International Congress on Mathematical Education (pp. 71–92). Gewerbestrasse, Switzerland: Springer International Publishing. 

ABSTRACT: Drawing on longitudinal evidence from the LieCal Project, issues related to mathematics curriculum reform and student learning are discussed. The LieCal Project was designed to longitudinally investigate the impact of a reform mathematics curriculum called the Connected Mathematics Project (CMP) in the United States on teachers’ teaching and students’ learning. Using a three-level conceptualization of curriculum (intended, implemented and attained), a variety of evidence from the LieCal Project is presented to show the impact of mathematics curriculum reform on teachers’ teaching and students’ learning. The findings from the two longitudinal studies in the LieCal Project serve both to show the kind of impact curriculum has on teachers’ teaching and students’ learning and to suggest powerful ways researchers can investigate curriculum effect on both teaching and learning.

Read Article

Cai, J., & Moyer, J. C. (2006). A conceptual framework for studying curricular effects on students’ learning: Conceptualization and design in the LieCal project. Poster presented at the 2006 Annual Meeting of the International Group of Psychology of Mathematics Education, Prague, Czech Republic. 

Cai, J., Hwang, S., & Moyer, J.C. (2016) Mathematical problem posing as a measure of curricular effect on students’ learning: A response. Educational Studies in Mathematics, 91(1), 9–10. 

Read Article

Cai, J., Moyer, J. C., Wang, N., & Nie, B. (2011). Examining students’ algebraic thinking in a curricular context: A longitudinal study. In J. Cai & E. Knuth (Eds.), Early algebraization: A global dialog from multiple perspectives (pp. 161-186). New York: Springer.

ABSTRACT: This chapter highlights findings from the LieCal Project, a longitudinal project in which we investigated the effects of a Standards-based middle school mathematics curriculum (CMP) on students’ algebraic development and compared them to the effects of other middle school mathematics curricula (non-CMP). We found that the CMP curriculum takes a functional approach to the teaching of algebra while non-CMP curricula take a structural approach. The teachers who used the CMP curriculum emphasized conceptual understanding more than did those who used the non-CMP curricula. On the other hand, the teachers who used non-CMP curricula emphasized procedural knowledge more than did those who used the CMP curriculum. When we examined the development of students’ algebraic thinking related to representing situations, equation solving, and making generalizations, we found that CMP students had a significantly higher growth rate on representing-situations tasks than did non-CMP students, but both CMP and non-CMP students had an almost identical growth in their ability to solve equations. We also found that CMP students demonstrated greater generalization abilities than did non-CMP students over the three middle school years.

The research reported in this chapter is part of a large project, Longitudinal Investigation of the Effect of Curriculum on Algebra Learning (LieCal Project). The LieCal Project is supported by a grant from the National Science Foundation (ESI-0454739). Any opinions expressed herein are those of the authors and do not necessarily represent the views of the National Science Foundation.

Read Article

Cai, J., Moyer, J. C., Wang, N., Hwang, S., Nie, B., & Garber, T. (2013). Mathematical problem posing as a measure of curricular effect on students’ learning. Educational Studies in Mathematics, 83(1), 57–69. 

ABSTRACT: In this study, we used problem posing as a measure of the effect of middle-school curriculum on students' learning in high school. Students who had used a standards-based curriculum in middle school performed equally well or better in high school than students who had used more traditional curricula. The findings from this study not only show evidence of strengths one might expect of students who used the standards-based reform curriculum but also bolster the feasibility and validity of problem posing as a measure of curriculum effect on student learning. In addition, the findings of this study demonstrate the usefulness of employing a qualitative rubric to assess different characteristics of students' responses to the posing tasks. Instructional and methodological implications of this study, as well as future directions for research, are discussed.

Read Article

Cai, J., Moyer, J. C., Wang, N., Hwang, S., Nie, B., & Garger, T. (2012). Mathematical problem posing as a measure of the curricular effects on students’ learning. Educational Studies in Mathematics, 83(1), 57-69.

ABSTRACT: In this study, we used problem posing as a measure of the effect of middle-school curriculum on students' learning in high school. Students who had used a standards-based curriculum in middle school performed equally well or better in high school than students who had used more traditional curricula. The findings from this study not only show evidence of strengths one might expect of students who used the standards-based reform curriculum but also bolster the feasibility and validity of problem posing as a measure of curriculum effect on student learning. In addition, the findings of this study demonstrate the usefulness of employing a qualitative rubric to assess different characteristics of students' responses to the posing tasks. Instructional and methodological implications of this study, as well as future directions for research, are discussed.

Read Article

Cai, J., Moyer, J., Nie, B., & Wang, N. (2009). Learning mathematics from classroom instruction using Standards-based and traditional curricula: An analysis of instructional tasks. In S. L. Swars, D. W. Stinson, & S. Lemons-Smith (Eds.), Proceedings of the 31st annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (Vol. 5, pp. 692-699). Atlanta, GA: Georgia State University.

ABSTRACT: The LieCal Project longitudinally investigates the effects of the Connected Mathematics Program (CMP) and more traditional middle school curricula (non-CMP) on students’ learning of algebra. To ascertain the curricular effects, we must attend to aspects of teaching that influence students’ learning opportunities. In this paper, we particularly focused on the mathematical tasks to understand the instructional experiences provided when using CMP and Non-CMP curricula. We found that teachers in CMP classrooms implemented significantly more cognitively demanding tasks than teachers in Non-CMP classrooms. Also, teachers are much more likely to encourage multiple strategies in CMP classrooms than in Non-CMP classrooms.

Read Article

Cai, J., Nie, B., & Moyer, J. (2010). The teaching of equation solving: Approaches in Standards-based and traditional curricula in the United States. Pedagogies: An International Journal. 5(3), 170-186.

ABSTRACT: This paper discusses the approaches to teaching linear equation solving that are embedded in a Standards-based mathematics curriculum (CMP) and in a traditional mathematics curriculum (Glencoe Mathematics) in the United States. Overall, the CMP curriculum takes a functional approach to teach equation solving, while Glencoe Mathematics takes a structural approach to teach equation solving. The functional approach emphasizes the important ideas of change and variation in situations and contexts. It also emphasizes the representation of relationships between variables. The structural approach, on the other hand, requires students to work abstractly with symbols, and follow procedures in a systematic way. The CMP curriculum may be regarded as a curriculum with a pedagogy that emphasizes predominantly the conceptual aspects of equation solving, while Glencoe Mathematics may be regarded as a curriculum with a pedagogy that emphasizes predominantly the procedural aspects of equation solving. The two curricula may serve as concrete examples of functional and structural approaches, respectively, to the teaching of algebra in general and equation solving in particular.

Read Article

Cai, J., Nie, B., Moyer, J. C., & Wang, N. (2014). Teaching mathematics using standards-based and traditional curricula: A case of variable ideas. In Y. Li & G. Lappan (Eds.), Mathematics curriculum in school education (pp. 391–415). Dordrecht, Netherlands: Springer Netherlands. 

ABSTRACT: This chapter discusses approaches to teaching algebraic concepts like variables that are embedded in a Standards-based mathematics curriculum (CMP) and in a traditional mathematics curriculum (Glencoe Mathematics). Neither the CMP curriculum nor Glencoe Mathematics clearly distinguishes among the various uses of variables. Overall, the CMP curriculum uses a functional approach to teach equation solving, while Glencoe Mathematics uses a structural approach to teach equation solving. The functional approach emphasizes the important ideas of change and variation in situations and contexts. The structural approach, on the other hand, avoids contextual problems in order to concentrate on developing the abilities to generalize, work abstractly with symbols, and follow procedures in a systematic way. This chapter reports part of the findings from the larger LieCal research project. The LieCal Project is designed to investigate longitudinally the impact of a Standards-based curriculum like CMP on teachers’ classroom instruction and student learning. This chapter tells part of the story by showing the value of a detailed curriculum analysis in characterizing curriculum as a pedagogical event.

Read Article

Cai, J., Wang, N., Moyer, J. C., Wang, C., & Nie, B. (2011). Longitudinal investigation of the curricular effect: An analysis of student learning outcomes from the LieCal project in the United States. International Journal of Educational Research, 50(2), 117–136. 

ABSTRACT: In this article, we present the results from a longitudinal examination of the impact of a Standards-based or reform mathematics curriculum (called CMP) and traditionalmathematics curricula (called non-CMP) on students’ learning of algebra using various outcome measures. Findings include the following: (1) students did not sacrifice basic mathematical skills if they are taught using a Standards-based or reform mathematics curriculum like CMP; (2) African American students experienced greater gain in symbol manipulation when they used a traditional curriculum; (3) the use of either the CMP or a non-CMP curriculum improved the mathematics achievement of all students, including students of color; (4) the use of CMP contributed to significantly higher problem-solving growth for all ethnic groups; and (5) a high level of conceptual emphasis in a classroom improved the students’ ability to represent problem situations. (However, the level of conceptual emphasis bears no relation to students’ problem solving or symbol manipulation skills).

Read Article 

Cai, J., Yujing N., & Hwang, S. (2015). Measuring change in mathematics learning with longitudinal studies: Conceptualization and methodological issues. In J. Middleton, J. Cai, & S. Hwang (Eds.), Large-scale studies in mathematics education (pp. 293–309). Gewerbestrasse, Switzerland: Springer International Publishing. 

ABSTRACT : Learning is fundamentally about growth and change. Longitudinal studies of mathematics learning must therefore conceptualize, measure, analyze, and interpret changes in students’ mathematical thinking. This chapter provides a perspective on how researchers can deal with issues entailed in researching such change over time, drawing on the authors’ experiences with two longitudinal projects in the USA and China. Both the LieCal (Longitudinal Investigation of the Effect of Curriculum on Algebra Learning) project and the China project studied the effects of curriculum on student learning. Based on these projects, several challenges are discussed, including the complexity of conceptualizing and measuring change in mathematical thinking, the importance of appropriate analytic techniques, the need to consider long-term change, and critical concerns when interpreting the correlates or causes of observed change.

Read Article

Cain, J. S. (2002). An evaluation of the Connected Mathematics Project. Journal of Educational Research, 95(4), 224-33.

ABSTRACT: Evaluated the Connected Mathematics Project (CMP), a middle school reform mathematics curriculum used in Louisiana's Lafayette parish. Analysis of Iowa Test of Basic Skills and Louisiana Education Assessment Program mathematics data indicated that CMP schools significantly outperformed non-CMP schools. Surveys of teachers and students showed that both groups believed the program was helping students become better problem solvers.

Read Article

Castro, A. M. (2006). Planning for mathematics instruction: A study of the teacher guide as a resource. (Doctoral dissertation). Retrieved from Dissertation Abstracts International, 67(10). (ProQuest ID No. 1251814391)

ABSTRACT: Planning is an important, and often underappreciated, phase of teaching, during which teachers make decisions and draw upon a variety of resources, such as curriculum materials, that shape students' opportunities to learn. The teacher guide (TG) is a particularly important curricular resource be cause it is designed to assist teachers in making decisions that affect these opportunities. Prior research has established that teachers' use of curriculum materials is affected by a range of factors, such as state level policies, knowledge of mathematics, and the nature and extent of their teaching experience. What is less clear, and far less examined, in prior research is the role that the TG may play in mediating the influence of these and other factors on teachers' decisions and actions during planning and instruction. Accordingly, this study examines how four experienced 6th grade teachers use the TG from Connected Mathematics Project (CMP) as a resource in making planning and enactment decisions, and factors associated with patterns of TG use.

Using interpretive case study methodology, the author examined teachers' use of the CMP TG in planning for and implementing an entire unit. In addition to observing their implementation of the unit, teachers were interviewed prior to and immediately following each observation to understand how they used the TG to plan for and enact different mathematical tasks. The author then developed case studies of teachers' use of the TG in implementing the unit.

Through cross-case analysis, the author found that teachers seemed to draw largely from their personal resources when making planning and enactment decisions related to mathematical tasks, and not particularly from the TG. For example, when faced with certain planning and instructional challenges, such as anticipating how students would work on a task or students struggling with the content, teachers tended to rely on their particular conceptions of mathematics teaching to address these challenges. Despite the fact that the TG provided suggestions for teachers as to how address such challenges, it was not extensively used as a resource by the teachers in this study in their planning and enactment of classroom lessons. Based on these and other findings the author identifies important questions and potential implications for curriculum developers, teacher educators, and researchers.

Read Article

Cavanagh, J. M. (2012). An organizational case study: The impact of an initiation, implementation, and institutionalization of a curricular change (Doctoral dissertation). Available from ProQuest Dissertations and Theses data-base. (UMI No. 1015379520)

ABSTRACT: Successful change in schools is planned, expected and managed with the objective focused on benefiting the students, not just converting the staff. This investigation is a case study of a public school district that opted to implement curricular change following an examination of the district's performance toward adequate yearly progress. This case study utilized a quantitative design to address: the process and impact of an initiation, implementation and institutionalization of a district level curricular change, the roles that emerged among participants in this process, the influence of stakeholders, the dynamics and processes of change, and the impact of the curricular change on student achievement. Surveys were distributed to 18 teachers, three middle level administrators and four central office personnel in order to analyze the organizational processes and the perceived roles of stakeholders in the curricular change process. The overall participation rate was 68%. Surveys were analyzed to examine three themes: if the curricular change process was triggered by external stakeholders that had legitimate claims on the operation of the organization, if the curricular change process was initiated and dictated by the high level district stakeholders, and if the curricular change process was implemented and carried through by high level internal stakeholders. Additionally, Pennsylvania System of School Assessment math scores for eighth grade were collected and analyzed comparing four groups based upon the amount of Connected Mathematics Project instruction the students received. Analysis of Pennsylvania System of School Assessment eighth grade math scores revealed that scores increased progressively with each additional year of Connect Mathematics Project completion. Further research involving the surveying of high school teachers, as well as review of eleventh grade Pennsylvania System of School Assessment math scores may be helpful. Review of additional performance indicators, such as classroom mathematics grades may also be beneficial.

Read Article

Charalambos, C. Y., & Hill, H. C. (2012). Teacher knowledge, curriculum materials, and quality of instruction: Unpacking a complex relationship. Journal of Curriculum Studies, 44(4), 443- 466.

ABSTRACT: The set of papers presented in this issue comprise a multiple-case study which attends to instructional resources—teacher knowledge and curriculum materials—to understand how they individually and jointly contribute to instructional quality. We approach this inquiry by comparing lessons taught by teachers with differing mathematical knowledge for teaching who were using either the same or different editions of a US Standards-based curriculum. This introductory paper situates the work reported in the next four case-study papers by outlining the analytic framework guiding the exploration and detailing the methods for addressing the research questions.

Read Article

Charalambos, C. Y., Hill, H. C., & Mitchell, R. N. (2012). Two negatives don't always make a positive: Exploring how limitations in teacher knowledge and the curriculum contribute to instructional quality. Journal of Curriculum Studies, 44(4), 489-513.

ABSTRACT: This paper examines the contribution of mathematical knowledge for teaching (MKT) and curriculum materials to the implementation of lessons on integer subtraction. In particular, it investigates the instruction of three teachers with differing MKT levels using two editions of the same set of curriculum materials that provided different levels of support. This variation in MKT level and curriculum support facilitated exploring the distinct and joint contribution of MKT and the curriculum materials to instructional quality. The analyses suggest that MKT relates positively to teachers' use of representations, provision of explanations, precision in language and notation, and ability to capitalize on student contributions and move the mathematics along in a goal-directed manner. Curriculum materials set the stage for attending to the meaning of integer subtraction and appeared to support teachers' use of representations, provision of explanations, and precision in language and notation. More critically, the findings suggest that less educative curriculum materials, coupled with low levels of MKT, can lead to problematic instruction. In contrast, educative materials can help low-MKT teachers provide adequate instruction, while higher MKT levels seem to enable teachers to compensate for curriculum limitations.

Read Article

Choppin, J. (2009). Curriculum-context knowledge: Teacher learning from successive enactments of a Standards-based mathematics curriculum. Curriculum Inquiry, 39(2), 287- 320.

ABSTRACT: This study characterizes the teacher learning that stems from successive enactments of innovative curriculum materials. This study conceptualizes and documents the formation of curriculum-context knowledge (CCK) in three experienced users of a Standards-based mathematics curriculum. I define CCK as the knowledge of how a particular set of curriculum materials functions to engage students in a particular context. The notion of CCK provides insight into the development of curricular knowledge and how it relates to other forms of knowledge that are relevant to the practice of teaching, such as content knowledge and pedagogical content knowledge. I used a combination of video-stimulated and semistructured interviews to examine the ways the teachers adapted the task representations in the units over time and what these adaptations signaled in terms of teacher learning. Each teacher made noticeable adaptations over the course of three or four enactments that demonstrated learning. Each of the teachers developed a greater understanding of the resources in the respective units as a result of repeated enactments, although there was some important variation between the teachers. The learning evidenced by the teachers in relation to the units demonstrated their intricate knowledge of the curriculum and the way it engaged their students. Furthermore, this learning informed their instructional practices and was intertwined with their discussion of content and how best to teach it. The results point to the larger need to account for the knowledge necessary to use Standards-based curricula and to relate the development and existence of well-elaborated knowledge components to evaluations of curricula.

Read Article

Choppin, J. (2011). Learned adaptations: Teachers’ understanding and use of curriculum resources. Journal of Mathematics Teacher Education, (published online: DOI: 10.1007/s10857-011-9170-3)

ABSTRACT: This study focused on the use of curriculum materials for three teachers who had enacted instructional sequences from the materials on multiple occasions. The study investigated how the teachers drew on the materials, what they understood about the curriculum resources, and how they connected their use of the materials to their observations of student thinking. There were similarities across the teachers, particularly with respect to their goals and how they read and followed recommendations in the teacher resource materials. There were differences in how their task revisions were in response to what they observed about student thinking. The teacher who most intensively observed student thinking made connections between her interpretations of students’ strategies and her use of the curriculum resources, allowing her to design learned adaptations. Learned adaptations required both an understanding of the design rationale and empirically developed knowledge of how that rationale played out in practice. The empirically developed knowledge could not be totally anticipated by the designers, in part because it developed within a particular context by a teacher with particular characteristics. The case of the teacher who developed learned adaptations showed how these complementary forms of knowledge helped her to use the curriculum resources in ways that enhanced students’ opportunities for sense making. Furthermore, her adaptations were intended to facilitate success not only at the task level, but also across instructional sequences as well. This study also shows how professional vision is not limited to informing only in-the-moment instructional decisions, but also to the use of curriculum materials.

Choppin, J. (2011). The impact of professional noticing on teachers’ adaptations of challenging tasks. Mathematical Thinking and Learning, 13(3), 175-191.

ABSTRACT: This study investigates how teacher attention to student thinking informs adaptations of challenging tasks. Five teachers who had implemented challenging mathematics curriculum materials for three or more years were videotaped enacting instructional sequences and were subsequently interviewed about those enactments. The results indicate that the two teachers who attended closely to student thinking developed conjectures about how that thinking developed across instructional sequences and used those conjectures to inform their adaptations. These teachers connected their conjectures to the details of student strategies, leading to adaptations that enhanced task complexity and students' opportunity to engage with mathematical concepts. By contrast, the three teachers who evaluated students' thinking primarily as right or wrong regularly adapted tasks in ways that were poorly informed by their observations and that reduced the complexity of the tasks. The results suggest that forming communities of inquiry around the use of challenging curriculum materials is important for providing opportunities for students to learn with understanding.

Collins, A. M. (2002). What happens to student learning in mathematics when a multifaceted, long-term professional development model to support Standards-based curricula is implemented in an environment of high stakes testing? (Doctoral dissertation). Retrieved from Dissertation Abstracts International, 65(2). (ProQuest ID No. 765336031)

ABSTRACT: Assessment and accountability have created a high-stakes environment for districts, schools, teachers, and students. Assessment is driving most educational decisions. In Massachusetts graduation is contingent upon passing the mathematics and English language arts subtests of the Massachusetts Comprehensive Assessment System (MCAS). Teachers in schools where 30% or more students fail MCASare required to take a mathematics proficiency test. Middle schools not exhibiting improvement in their mathematics scores are identified as under-performing and are subject to interventions by the Department of Education. Not surprisingly, students in urban districts score significantly lower than those in more affluent suburban districts. To date only urban schools have been declared under-performing. It is within this environment of high-stakes testing and As repercussions that this study was undertaken.

In an effort to change the unsuccessful experiences of many urban students, the Noyce Foundation and Raytheon Company made a commitment to funding a long-term professional development intervention. This study investigates the impact of that sustained professional development program in one urban district. The professional development was designed to support the implementation of The Connected Mathematics Project (CMP) and to assess its impact on student learning. This dissertation presents a quantitative comparison between student scores on two standardized tests in schools whose teachers availed themselves of all available professional development surrounding the implementation process for CMP with schools whose teachers chose only to participate in contractually mandated district professional development.

Results indicate that students in schools whose teachers received sustained professional development designed to meet the needs of the participating teachers performed significantly higher on both the MCAS and a nationally normed achievement test, Terra Nova, than did those students whose teachers had not participated in consistent professional development. Evidence is included to document the positive impact on student achievement as a result of changing teacher practice and beliefs through mentoring and coaching in teachers' own classrooms.

Edson, A.J., Phillips, E., Slanger-Grant, Y., & Stewart J. (2018). The Arc of Learning framework: An ergonomic resource for design and enactment of problem-based curriculum. International Journal of Educational Research.

Read Article

Edson, A.J., Phillips, E.D., & Bieda, K. (2018). Transitioning a problem-based curriculum from print to digital: New considerations for task design. In H-G Weigand, A. Clark-Wilson, A. Donevska-Todorova, E. Faggiano, N. Gronbaek & A. Trgalova (Eds.), Proceedings of the Fifth ERME Topic Study on Mathematics in the Digital Age (p. 59-67). Copenhagen, Denmark: University of Copenhagen.

Fey, J. T., & Philips, E. D. (2005). A course called Algebra 1. In C. Greenes & C. Findell (Eds.), Developing students’ algebraic reasoning abilities (pp. 4-16). Lakewood, CO: National Council of Supervisors of Mathematics.

ABSTRACT: As suggested by the NCTM Principles and Standards 2000, an overarching focus for algebra is on developing student ability to represent and analyze relationships among quantitative variables. From this perspective, variables are not letters that stand for unknown numbers-they are quantitative attributes of objects (like measurements of size), patterns, or situations that change in response to other quantities or with the passage of time. Understanding and predicting patterns of change in variables emerges as the most important goal of algebra, with linear functions a cornerstone of beginning algebra. This paper provides a framework for ways to organize these ideas into a comprehensive and coherent curriculum and a set of dispositions that should be outcomes for students.

Gencturk, Y. C. (2012). Teachers’ mathematical knowledge for teaching, instructional practices, and student outcomes. (Unpublished doctoral dissertation). University of Illinois at Urbana-Champaign, Champaign, IL.

ABSTRACT: This dissertation examines the relationships among teachers’ mathematical knowledge, their teaching practices, and student achievement. Quantitative and qualitative data collection techniques (content knowledge assessments, surveys, interviews, and classroom observations) were used to collect data from 21 teachers and 873 students. Twenty-one in-service teachers who enrolled in a master’s program designed specifically for the needs of a partnership district were followed for 4 years to study how their mathematical knowledge as well as their teaching changed over time. Of the 21 teachers, 8 teachers were chosen for additional classroom observations and interviews. For the quantitative part of the study, two-level linear growth models were used to examine the effects of the mathematical knowledge of K-8 teachers on their instructional practices. After student-level data were added, three-level growth models were used to analyze the effects of teachers’ knowledge and instructional practices on students’ gain scores. Teachers’ beliefs about teaching and learning mathematics were also included in some analyses. The results indicated that, compared with the initial baseline data, teachers’ mathematical knowledge increased dramatically, and the teachers made statistically significant changes in their lesson design, mathematical agenda of the lessons, task choices, and classroom climate. The gains in teachers’ mathematical knowledge predicted changes in the quality of their lesson design, mathematical agenda, and classroom climate. Teachers’ beliefs were related to the quality of their lesson design, mathematical agenda, and the quality of the tasks chosen. However, only student engagement was significantly related to students’ gain scores. Neither teachers’ mathematical knowledge nor other aspects of instruction (inquiry-oriented teaching, the quality of task choices, and the classroom climate) were associated with students’ gain scores. The qualitative analyses revealed particular strands of the complex relationship between teachers’ mathematical knowledge and their instructional practices. Teachers’ beliefs played a mediating role in the relationship between teachers’ mathematical knowledge and instructional practices. Teachers favoring standards-based views of mathematics tended to teach in more inquiry-oriented ways and ask more questions of students; however, among teachers with limited mathematical knowledge, these practices seemed superficial. Additionally, the teachers’ task choices appeared to be confounded by teachers’ current level of mathematical knowledge and their textbook use.

Heck, D. J., Banilower, E. R., Weiss, I. R., & Rosenberg, S. L. (2008). Studying the effects of professional development: The case of the NSF's local systemic change through teacher enhancement initiative. Journal for Research in Mathematics Education, 39(2), 113-152.

ABSTRACT: Enacting the vision of NCTM's Principles and Standards for School Mathematics depends on effective teacher professional development. This 7-year study of 48 projects in the National Science Foundation's Local Systemic Change Through Teacher Enhancement Initiative investigates the relationship between professional development and teachers' attitudes, preparedness, and classroom practices in mathematics. These programs included many features considered to characterize effective professional development: content focus, extensive and sustained duration, and connection to practice and to influences on teachers' practice. Results provide evidence of positive impact on teacher-reported attitudes toward, preparedness for, and practice of Standards-based teaching, despite the fact that many teachers did not participate in professional development to the extent intended. Teachers' perception of their principals' support for Standards-based mathematics instruction was also positively related to these outcomes.

Read Article

Herbel-Eisenmann, B. A. (2000). How discourse structures norms: A tale of two middle school mathematics classrooms. (Doctoral dissertation). Retrieved from Dissertation Abstracts International, 62 (1). (ProQuest ID No. 727910361)

ABSTRACT: My experiences as a student and a teacher of mathematics have led me to pursue the topic of this dissertation--discourse patterns and norms in two "reform-oriented" mathematics classrooms. The two 8th grade classrooms that form the focus of this dissertation were using the Connected Mathematics Project, an NSF-funded curriculum project. I was intrigued by the teachers and their teaching because I noticed the students seemed to have similar understandings, but each classroom felt different to me as a participant-observer.

These classrooms offered a context that allowed me to study differences in the context of similarity. The teachers had many attributes in common (detailed in Chapter 5): similar academic backgrounds and professional development activities, same certification, same school, same curriculum and similar enthusiasm for it, same heterogeneous group of students, similar student-understandings, etc. However, the teaching in the two classrooms was different. Drawing from the sociolinguistics and mathematics education literatures, I describe the social and sociomathematical norms of the two classrooms in terms of the classroom discourse which they were embedded in and carried by. I also interpret student understandings whenever possible throughout the thesis, taking a social constructivist perspective. In the year prior to commencing my dissertation study (1997-1998), I completed classroom observations and student interviews as part of my practicum work and research assistantship, which were used to form preliminary hypothesis about student understandings and the classroom environment. The data used for this dissertation was collected over the next two years (1998-2000). During the first, I observed and audio-and video-taped students on a weekly basis. In addition, students were interviewed about their algebraic understandings and their classroom experience. The second year, one of the classrooms was observed to trace the formation of the norms in the classroom. The teachers took part in four extensive interviews, in which they were asked about influencing experiences related to their teaching and the norms in their classroom (in terms of the expectations, rights and roles of themselves and their students).

The ideas I investigate in this dissertation include how social and sociomathematical norms are embedded in and carried by the classroom discourse in each classroom (Chapters 6 and 7). I also discuss aspects in the teachers' professional lives that influenced the ways they think about and work to establish and maintain the norms in their classrooms (Chapter 5). In Chapter 8, I look across the two classrooms to offer what I see as being similar and different, which has allowed me to locate differences in: the overall structure of teacher talk, the positioning of the teacher with respect to the locus of authority, the way each teacher draws from potential other knowledge sources in the classroom (i.e. students and the textbook), and the way each teacher draws attention to the common knowledge constructed in the classroom.

Katwibun, D. (2004). Middle school students' mathematical dispositions in a problem-based classroom. (Doctoral dissertation). Dissertation Abstracts International, 65(5). (ProQuest ID No. 766026571)

ABSTRACT: The purpose of this study was to describe middle school students' mathematical dispositions in a problem-based learning [PBL] classroom. Eight volunteer students from one 6th grade mathematics classroom participated in this study. The curriculum used was the Connected Mathematics Project [CMP]. The main sources for data collection were classroom observations, the Attitudes and Beliefs questionnaire, teacher interviews, and student interviews. The CMP class routine consisted of four phases: Warm-up, Launch, Explore, and Summarize. The teacher in this study had her students investigate mathematics problems within cooperative small groups and share their ideas in large group discussions. The teacher acted as a facilitator and encouraged her students to try new ideas without fear of making mistakes. The findings revealed that almost all of the students in this study demonstrated positive mathematical dispositions. They volunteered and shared their ideas, both in small cooperative group investigations and in large group discussions. They believed mathematics was about "learning new ideas" and mathematics was "life" because it was everywhere in their lives. They also mentioned the usefulness of numbers, measurement, and geometry in their daily lives. All eight participants liked hands-on activities and working on a mathematics project. Most of them agreed that they liked mathematics because it was fun and interactive. Most also saw themselves as good at mathematics. All of them agreed that mathematics was useful, and that one's mathematics ability could be increased by effort. They also believed that there were no gender differences in mathematics, even though in their class, they realized that boys outperformed girls. Most of the students agreed that they could solve time-consuming mathematics problems and that it was important to understand mathematical concepts. None of them had negative feelings about group work; they learned from each other.

Finally, an analysis of the participants' mathematical dispositions was discussed. Based on the Taxonomy of Educational Objects: Affective Domains by Krathwohl, Bloom, and Masia (1964), the participants were categorized into three disposition levels: Level 1: "receiving;" Level 2: "responding;" and Level 3: "valuing." Half of the participants demonstrated dispositions at the high level (Level 3: "valuing") because of their willingness to pursue and/or seek to do mathematics outside the classroom. Three of them were in mathematics disposition Level 2.3: "satisfaction in response" because they usually participated in the class activities. They were satisfied and enjoyed doing mathematics. One of them demonstrated mathematical disposition Level 1.2: "willingness to receive" because she listened to the whole class and group discussions without sharing any ideas or asking for help when she needed it.

Read Article

Keiser, J. M. (1997). The development of students' understanding of angle in a non-directive learning environment. (Doctoral dissertation). Retrieved from Dissertation Abstracts International, 58 (8). (ProQuest ID No. 736600251)

ABSTRACT: Curriculum reform in mathematics shows that geometry is becoming an important part of the middle grades curriculum. This dissertation study looks at the geometry learning of sixth-grade students who were using a newly-drafted unit, Shapes and Designs, from a reformed middle grades curriculum, the Connected Mathematics Project (CMP).

The research focuses on students' understandings of angle concepts. The research questions are as follows: What understandings of angle concepts are revealed by sixth-grade students during their geometry investigations? Which concepts are particularly difficult (easy) for students to grasp? What are some of them is conceptions they hold? How well-connected are their ideas and what are the gaps in their thinking concerning the angle concepts that are presented?

A CMP pilot-testing school in Michigan was chosen as the site for in-class observations since the teachers had been teaching with CMP materials for two years. Two mathematics classrooms were observed daily during the duration of the Shapes and Designs instruction which lasted 5 weeks during the winter of1995-96. The researcher observed and audio-taped all classroom discourse and collected samples of students' work. Data were transcribed and analyzed for important themes in the students' understandings. Results revealed that students' understandings of angle concepts are disconnected and fragile. Students tend to focus on one of three aspects--the angle's vertex, its rays, or its interior region. These unbalanced concept images often exclude many angles from being considered as angles, and can also interfere with other understandings such as angle size. However, these understandings are a very natural part of development given three different influences--the mathematical community's construction of the angle concept throughout history, the students' everyday experiences and language, and the instructional approach--all of which were highly influential factors in the students' development of the angle concept.

Read Study

Lambdin, D., & Keiser, J. M. (1996). The clock is ticking: Time constraint issues in mathematics teaching reform. Journal of Educational Research, 90(4), 23-32.

ABSTRACT: Time issues raised by sixth-and seventh-grade teachers involved in field testing an NSF-sponsored investigation-centered mathematics curriculum (the Connected Mathematics Project--CMP) for middle-grades students were examined in this study. Questions investigated included the following: How much scheduled time is actually available for mathematics instruction in elementary and middle schools and how is it configured? How do project teachers and students spend their time in class? What factors influence CMP teachers' pacing through this new curriculum? Findings indicate that teaching in the spirit of the current mathematics education reform movement may be highly dependent upon flexibility in class scheduling. Innovations in teaching mathematics (e.g., increased group work, writing, extended projects, and alternative forms of assessment) seem to require additional time, and new ways of thinking about using class time.

Lappan, G. (1997). The challenge of implementation: Supporting teachers. American Journal of Education, 106(1), 207-239.

ABSTRACT: Reform in mathematics education has been stimulated and propelled by the publication of standards documents by the National Council of Teachers of Mathematics. This article examines the vision of teacher decision making that is portrayed in NCTM Professional Teaching Standards: choosing worthwhile mathematical tasks, orchestrating and monitoring classroom discourse, creating an environment for learning, and analyzing one's practice. The philosophical orientation and the set of commitments to teaching and learning on which the standards are based include stances on equity, curriculum, teaching, and learning. These stances are summarized under the following headings: inclusiveness, depth over coverage, teaching for understanding, active engagement of students, curriculum investigations, applications, and connections.

Lewis, J. M. & Blunk, M. L. (2012). Reading between the lines: Teaching linear algebra. Journal of Curriculum Studies, 44(4), 515-536.

ABSTRACT: This paper compares lessons on linear equations from the same curriculum materials taught by two teachers of different levels of mathematical knowledge for teaching (MKT). The analysis indicates that the mathematical quality of instruction in these two classrooms appears to be a function of differences in MKT. Although the two teachers were teaching from the same curriculum materials, the teacher with higher MKT had more complete and concise ways to describe key concepts, had multiple ways to represent ideas about linear equations, could move nimbly among different mathematical expressions of linear relationships, and gave students a larger role in articulating the mathematical ideas of the lesson. However, curriculum materials seem to have moderated what would otherwise have been larger disparities in the quality of instruction between the two teachers. The lower-MKT teacher made minor mathematical errors, stayed on topic, and defined concepts in reasonably accurate ways when he followed the curriculum materials closely.

Philips, E. (2019). Promoting Productive Disciplinary Engagement and Learning With the CMP STEM Problem Format and “Just-in-Time” Supports in Middle School Mathematics. Poster Presentation, International Society of Design and Development  Conference. Pittsburgh, Pennsylvania: University of Pittsburgh.

Phillips, E. (1995). A response to “A research base supporting long-term algebra reform?” Paper presented at the 17th Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education, Columbus, OH.

ABSTRACT: This paper is a reaction to a plenary address, "A Research Base Supporting Long Term Algebra Reform?" by James Kaput (SE 057 182). The reactions fall into three categories: comments on Kaput's dimensions of algebra reform, a brief discussion of algebra and algebra reform from the viewpoint of a curriculum developer of the Connected Mathematics Project (CMP), and some concerns about Kaput's three stages of reform.

Phillips, E. (2019). Mathematical Reasoning and Problem Posing- The Case of Connected Mathematics Project. Proceedings of International Research Forum on Mathematics Curriculum and Teaching Materials in Secondary School (p. 21). Beijing, China: People’s Education Press and Beijing Normal University.

Post, R. A. (2004). Generation of mathematical knowledge through teacher practice: Study of a novice elementary teacher. (Doctoral dissertation). Retrieved from Dissertation Abstracts International, 65(12). (ProQuest ID No. 845705381)

ABSTRACT: Research on teachers' knowledge has shown that elementary teachers often lack the deep, flexible, and conceptual mathematical understandings necessary for reform efforts in mathematics education to be realized in classroom practice. In order to meet the complex demands of developing a reform-oriented teacher practice, a considerable amount of teacher learning must take place through participation in the activity of teacher practice.

Using case study methods, this research analyzed the practice of one 1st-year elementary teacher as she implemented a reform-based curriculum program (Connected Mathematic Project) and participated in the school, classroom, and reform (i.e., curriculum materials and professional development) communities of practice. Data were collected from observations of three units of instruction, professional development sessions, concept maps, and interviews with the case study teacher and members of the school community. Analysis revealed the key role curriculum materials played in the generation of mathematical knowledge. The classroom and reform communities acted as catalysts in the teacher's participatory practices, which generated expanded, connected, and unresolved mathematical knowledge.

Raymond, A. (2004). “Doing math” in Austin. Teaching Pre K-8, 34(4), 42-45.

ABSTRACT: Since 1990, the January issue of "Teaching Pre K-8" has highlighted a school visit by the president of the National Council of Teachers of Mathematics. This article discusses Cathy Seeley's visit to a 6th grade classroom at the J. E. Pearce Middle School in Austin, Texas, where she participated in a math activity from the Connected Mathematics Project, a complete middle school mathematics curriculum for grades 6, 7, and 8. Funded by the National Science Foundation between 1991 and 1997, the program includes eight units for each grade, "built around mathematical problems that help students develop understanding of important concepts and skills in number, geometry, measurement, algebra, probability and statistics."

Rickard, A. (1993). Teachers’ use of a problem-solving oriented sixth-grade mathematics unit: Two case studies. (Doctoral dissertation). Retrieved from Dissertation Abstracts International, 54 (10), (ProQuest Id No. 745239291)

ABSTRACT: Problem solving is a central issue in current reform initiatives in mathematics education. However, while curriculum developers design problem-solving oriented curricula to help move reforms into K-12 mathematics classrooms, little is known about how teachers actually use problem-solving oriented mathematics curricula to teach.

This study investigates how two sixth-grade mathematics teachers used a problem-solving oriented unit on perimeter and area. A four-dimensional framework is developed and employed to explore how each teacher's knowledge, views, and beliefs shaped her use of the unit. Using data collected through interviews, classroom observations, conversations with teachers and their students, samples of students' work, teachers' lesson plans, and the unit on perimeter and area, two case studies are presented to portray how each teacher used the unit in her classroom.

This study shows that each teacher's use of the unit was consistent with her underlying views and beliefs, and with some aspects of the intentions of the curriculum developers who designed the unit. However, other aspects of the teachers' use of the unit varied from the intentions of the curriculum developers. This study shows further that each teacher's use of the unit was shaped by interplay between her own views, beliefs, and knowledge, and the unit. Therefore, both the perimeter and area unit and the teachers shaped the teaching which occurred in their classrooms.

This study suggests that while problem-solving oriented curriculum can play a role in shaping mathematics teaching, the views, beliefs, and knowledge of teachers should be addressed in curriculum. This study also points to issues for future research that are connected to teachers' use of problem-solving oriented curricula.

Rittle-Johnson, B., & Koedinger, K. (2005). Designing knowledge scaffolds to support mathematical problem solving. Cognition and Instruction, 23(3), 313-349.

ABSTRACT: We present a methodology for designing better learning environments. In Phase 1, 6th-grade students' (n = 223) prior knowledge was assessed using a difficulty factors assessment (DFA). The assessment revealed that scaffolds designed to elicit contextual, conceptual, or procedural knowledge each improved students' ability to add and subtract fractions. Analyses of errors and strategies along with cognitive modeling suggested potential mechanisms underlying these effects. In Phase 2, we designed an intervention based on scaffolding this prior knowledge and implemented the computer-based lessons in mathematics classes. In Phase 3, we used the DFA and supporting analyses to assess student learning from the intervention. The posttest results suggest that scaffolding conceptual, contextual, and procedural knowledge are promising tools for improving student learning.

Rohendi, D. & Dulpaja, J. (2013). Connected Mathematics Project (CMP) model based on presentation media to the mathematical connection ability of junior high school student. Journal of Education and Practice, 4(4), 17-22.

ABSTRACT: Connection mathematics ability will be greatly needed by students, especially to solve the problems that need the relation between mathematical concepts with other concepts in mathematics and other disciplines or in everyday life. To get that mathematics ability in this research used Connected Mathematics Project (CMP) model based on Presentation Media. CMP model based on presentation media was a student-centered learning model that involved student more; student not only did the problem but also sought the solution actively that enabled student to explore the relation of mathematical concept in real life. This research was a quasi experiment research with the student of 7th grade of Junior High School of Ujungjaya 2 of Sumedang district, Indonesia as the research sample. After the learning in the experiment class was conducted, the data description by using instrument of pre-test and post-test were collected to find out the student’s ability of mathematical connection, as well as observation sheet to find out the activity and condition of student during mathematical learning. The result of the research showed that the student’s mathematical connection ability by using Connected Mathematics Project (CMP) model based on presentation media was better than the conventional one. Besides, student’s activity in the learning process by using Connected Mathematics Project (CMP) based on presentation media was really positive and they became very active.

Read Article

Wilson, Nazemi, Jackson, Wilhelm (2019). Investigating Teaching in Conceptually Oriented Mathematics Classrooms Characterized by African American Student Success. Journal for Research in Mathematics Education. Vol. 50, No. 4, 362-400

ABSTRACT: This article outlines several forms of instructional practice that distinguished middle-grades mathematics classrooms that were organized around conceptually oriented activity and marked by African American students’ success on state assessments. We identified these forms of practice based on a comparative analysis of teaching in (a) classrooms in which there was evidence of conceptually oriented instruction and in which African American students performed better than predicted by their previous state assessment scores and (b) classrooms in which there was evidence of conceptually oriented instruction but in which African American students did not perform better than predicted on previous state assessment scores. The resulting forms of practice can inform professional learning for preservice and in-service teachers.

NOTE: This study was done in CMP classrooms.