
Vocabulary: Looking For Pythagoras 
 

Concept Example 
Finding areas of squares and other figures by 
subdividing or enclosing:  These strategies for 
finding areas were developed in Covering and 
Surrounding.  Students review finding areas by 
partitioning the figure into shapes whose areas they 
can easily find, or by surrounding the figure with a 
rectangle or square and subtracting the “extra” areas. 
 
Note: the reason for this review is to have students 
develop a strategy for finding the length of the side of 
a square, if the area CAN be calculated but the 
length of a side can NOT be calculated with existing 
knowledge.     
 

 
 
 
 

1.  In the figure on the left below, the shape is 
divided into 4 triangles, the areas of which can 
be found by using the given base and height.  
(See Covering and Surrounding for area of 
triangle.)   In the figure on the right the same 
shape is surrounded by a square whose edges 
are each 4 units, so the square has area 16 
square units.  We must now subtract the “extra” 
areas, some of which are triangles, and some of 
which are shapes that can be divided into 
squares and triangles.   

 
 

2. The bolded square below does not “line 
up” against the grid lines and so it is hard to 
calculate, or see its area.  However, if we draw 
broken lines, as shown, we can figure out that 
the area is actually made of 4 right triangles, 
with area 3 square units, and 1 small square 
with area 1 square unit.  The total area of the 
square is 13 square units.   
 
 
 
 
 
 
 
 
 
Note: this area could also have been calculated 
by surrounding the bolded square with a 
rectangle. 
 



Square Root: can be thought of as the length of the 
side of a square whose area is known.  Thus, a 
square with area 9 square units has a side of length 
square root of 9, or 3 units. We write “square root of 
9” as √9.  Or, it can be thought of as a number which 
when multiplied by itself gives a target number.  
Thus, to evaluate √20 we need to find a number 
which when multiplied by itself yields 20.   
 
Benchmarks: are useful when trying to evaluate 
square roots.  Thus, √20 must be greater than 4, 
because 4 is √16, but less than 4, because √25 is 5.  
 
Since many square roots are irrational (see below) 
students can not calculate them exactly.  They will 
either rely on benchmarks, or on a calculator. 
 

3.  
 
 
 
Area of bolded square = Area of outer square – 
4 triangles  
= 9 square units – 4(1) square units 
= 5 square units 
So length of side of square = √5 units.   
 
4.   
 2 x 2 = 4  
 
 
 3 x 3 = 9    
 
 
The area of the bolded square below is 5 
square units (see example 3).  So each side 
has length √5 units.  
? x? = 5   
 
 
Since 4 < 5 < 9, taking square roots, 2 < √5 < 3. 
 
Comparing the areas of the square figures 
above, we would guess that√5 is closer to 2 
that to 3.  Students might guess and check, 
using calculators or multiplying by hand.  2.1 x 
2.1 = 4.41, 2.2 x 2.2 = 4.84, 2.3 x 2.3 = 5.29.  
Apparently √5 is between 2.2 and 2.3.  (Using a 
calculator we find that √5 is approximately 
2.236.  √5 is irrational, so there is no exact 
terminating decimal equal to √5.) 
 

The relationship between square area and side 
length:  Since the side length of a square is the 
square root of the area of a square, students can find 
areas, using partitioning or surrounding strategies, 
and then use this to find the side length.     

5.   
 
 
 
 
 
 
The length of the above line segment could be 
measured with a ruler; since all measurement is 
an approximation this would give us some idea 
of the length.  To calculate an exact length, 



assuming the line segment connects two 
vertices on the grid, we could construct a 
square on this line segment, find the area of the 
square (using partitioning or surrounding as a 
strategy) and then calculate the length of a side. 
 
 
 
 
 
 
 
 
 
 
 
 
So length of side of square = exactly √13, or 
approximately 3.6 units. 
 

Area of 
square = 
13 square 
units 



Pythagoras Theorem:  says that the sum of the 
square areas on the two shorter sides of a right 
triangle is the same as the area on the longest side 
(hypotenuse) of the right triangle.   

 
 
Students discover this pattern when they build 
squares on the sides of a right triangle, and then find 
the areas as in example 5 above.  They also 
investigate a proof that this pattern works for all right 
triangles, and only for right triangles. 
 
 
The converse of the Pythagoras Theorem states 
that if the sum of the areas of the squares on the two 
shorter sides of a triangle is the same as the square 
area on the longest side of the triangle, then the 
triangle must be a right triangle.  Note that the 
original theorem starts with a given right triangle and 
proves the relationship between the square areas.  
The converse starts with the given relationship 
between the square areas and proves the triangle 
must be right angled. 
 
Pythagorean Triples: are sets of three whole 
numbers that fit the Pythagorean relationship, and 
therefore form right triangles.  For example, 3 – 4 – 5 
is a Pythagorean Triple, because 32 + 42 = 52.  
Therefore we can form a right triangle with these 
lengths or with any scaled up copy (see Comparing 
and Scaling) of these lengths.  The triple 3 – 4 – 5 is 
really a ratio 3:4:5, since any multiple of 3 – 4 – 5 will 
also be a Pythagorean Triple.  In fact all right 
triangles formed by the triple 3 – 4 – 5 will be similar.  
There is an infinite number of these Pythagorean 
Triples.  5:12:13 is another example. 

6.    
 
 
 
 
 
 
 
 
 
 
 
 
The original triangle has sides 2, 3 and a 
hypotenuse of unknown length.  The areas of 
the squares on the sides are 4 and 9 square 
units.  The area of the square on the 
hypotenuse can be calculated as in example 5, 
13 square units.    For this example we can see 
that the sum of the areas of the squares on the 
two sides of a right triangle (4 + 9 square units) 
is the same as the area of the square on the 
hypotenuse (13 square units).  Note: This is 
only one example, and should not be regarded 
as a proof.  Students do a very visual proof 
using an arrangement of triangles and squares 
to show that the sum of the square areas on the 
short sides of any right triangle is the same as 
the area of the square on the hypotenuse..   
 
 
7.  Is the following triangle right angled?  
Lengths of sides are  a = 2.5,  b = 6 and c = 6.5 
units. 
 
 
 
 
 
 
 
 
 
We could measure all the angles in the triangle, 
but this would be an approximation of angle 
sizes.  We can calculate squares of side lengths 



as follows: 
a 2 = 2.52 = 6.25. 
b 2 = 62 = 36. 
c2 = 6.52 = 42.25. 
Since a2 + b2 = c2 we can deduce that this 
triangle is right angled, with the right angle 
opposite the longest side, c. 
 
8. Find the distance between two points on a 
coordinate grid. 
 
 
 
 
 
 
 
The above sketch shows a line segment joining 
two points on a coordinate grid.  The points are 
(1, 1) and (5, 4).  To find the distance between 
these two points we can create a right triangle, 
and apply the Pythagorean Theorem. 
  
 
d2 = 32 + 42 = 25.  Therefore, d = 5. 
 
 
 
 
 
 
 
 
 

d 



Special right triangles:  A triangle with angles 30, 
60 and  90 degrees will have side lengths that satisfy 
the Pythagorean relationship;  a triangle with angles 
45, 45 and 90 degrees will have side lengths that 
satisfy the Pythagorean relationship.  The side 
lengths of any 30-60-90 triangle are in the ratio 1: √3: 
2; the side lengths of any 45-45-90 triangle are in the 
ratio 1: 1: √2.   

9. To see why a 30-60-90 triangle has sides in a 
particular ratio we first examine a 60-60-60 
triangle with each side length 2 units.  Notice 
that the altitude (at right angles to the base) 
bisects the base into two lengths, each 1 unit, 
creating two 30-60-90 triangles.   
 
 
 
 
 
 
 
 
 
 
 
 
 
The sides of this 30-60-90 triangle satisfy the 
Pythagorean relationship and so, 
12 + x2 = 22, so 
x2 = 3, so 
x = √3. 
 
The side lengths are 1, √3, 2 units 
 
10.  Triangle ABC, sketched below, has angles 
30, 60, 90 degrees, and the shortest side length 
is 3 units.  What are the other side lengths? 
 
 
 
 
 
 
 
This triangle is a scaled up similar copy of the 
triangle in example 9.  (See Stretching and 
Shrinking.)  The scale factor is 3.  So, the 
lengths are 3(1), 3(√3), and 3(2) units, or 3, 
3√3, 6 units. 
 
11.  Triangle PQR is a 45-45-90 triangle.  The 
hypotenuse is 5 units long.  How long are the 
other sides?  
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The ratio of side lengths for a 45-45-90 triangle 
is 1:1:√2.  In this triangle, which is a similar 
copy of every other 45-45-90 triangle, the ratio 
is p: r: 5, where p and r are the equal sides.  We 
can think of using a scale factor of 5/(√2) to 
scale up a triangle with sides that measure 1, 1, 
√2 units.  This will create a triangle with sides 
that measure 5/(√2), 5/(√2), 5 units, or 
approximately 3.5, 3.5, 5 
 (Note: students could also find the sides by 
using some algebraic reasoning. 
  P2 +r2 = q2, so 
p2 + p2 = 25, so 
2p2 = 25, so 
p2 = 12.5, so 
p = √12.5. or approximately 3.5 units.) 
 

q = 5 



Rational numbers:  are any numbers that can be 
written in the form a/b where a and b are integers, 
but b can not be zero.  Students can think of these as 
anything that can be written as a positive or negative 
fraction.   
Note: every rational number can be written as a 
decimal, either terminating or repeating.  (See 
Vocabulary, Bits and Pieces III.) 
 
Irrational numbers:  are numbers that can NOT be 
written in the form a/b where a and b are integers.  
Non-repeating, non-terminating decimals, and square 
roots that do not work out exactly and �  are examples  
of irrational numbers. 
Note: since numbers like √2 and √5 are irrational any 
decimal approximation will be inexact, no matter how 
many decimal places we use. √2 = 1.4142…  and  
√5 = 2.2360…  The decimal approximations never 
terminate and never repeat.  If they did terminate or 
repeat then these decimals could be written as 
rational numbers; but √2 and √5 are irrational 
numbers.  Using the format √2 is exact, whereas 
1.4142 is a very accurate, but inexact, approximation. 
 
Real #’s: are all the numbers which are either 
rational or irrational.   
 
Note: every number that students know about at this 
stage is a real number.  In High School they will meet 
other kinds of numbers, such as complex numbers. 
 
 
 

12.  Which of these numbers are rational 
numbers:   
2, 2.4, 0.1111…, -9, 2 1/3,  17/5, -2/7? 
 
ALL of these numbers are rational.  They CAN 
all be written as a/b.   
2 = 2/1 
2.4 = 24/10 (every terminating decimal can be 
written as a fraction with a power of 10 for a 
denominator) 
0.1111… = 1/9 (see below) 
-9 = -9/1 
2 1/3 = 7/3 
17/5 is already in the “a/b” format. 
-2/7 is already in the “a/b” format. 
From the above examples we can conclude that 
any integer, any positive or negative fraction, or 
mixed number, and any terminating decimal can 
be written as a rational number. 
 
13.  a. Write 1/9 as a decimal.   
Every fraction can be thought of as a division.  
So 1/9 can be thought of as 1 ÷ 9.  We can set 
this up as a division, 1.0000 ÷ 9, and get the 
decimal answer, 0.1111…  (See Bits and 
Pieces III for decimal division.) 
 
b. Write 0.121212…as a rational number.   
We can think of this as an algebra problem.   
X = 0.121212…    
So, 100x = 12.121212… 
So, 100x – x = 12.121212…. – 0.121212…. 
                      = 12.  
(Notice there is no repeating part now.) 
So, 99x = 12.  So, x = 12/99. 
This strategy could have been used for any 
repeating decimal.  Any repeating decimal can 
be written as a rational  number.   
 
14.  Give an example of a non-terminating and 
non-repeating decimal. 
0.3 is a terminating decimal. 0.333…is a 
repeating decimal.  But 0.32332333233332… 
has a pattern which neither terminates nor 
repeats.  Thus 0.32332333233332…is an 
irrational  number. 



 


