Vocabulary: Moving Straight Ahead

Concept	Example				
Patterns of Change in a 2-Variable Table:	1. Do any of the following tables indicate a constant rate				
illustrate how one variable changes in relation to	of change for y?				
the other. These patterns of change are clues as to					
the kind of relationship between the variables. In	Table 1:				
this unit linear relationships are the focus.	X 0 1 2 3 4				
Rate of Change: is the amount of change in one	Y 3 6 9 12 15				
variable per <i>unit</i> change in the other variable.					
Constant Rate of Change: occurs when the	Table 2:				
dependent variable changes by the same amount	X 0 2 4 6 8				
<i>per unit</i> increment in the independent variable.	Y 5 9 13 17 21				
	Table 3:				
	X 0 1 2 3 4				
	Y 0 2 5 9 14				
	Table 4:				
	X 0 1 3 7 8				
	Y 0 4 12 28 32				
	Tables 1, 2, and 4 show y increasing at a constant rate. In				
	table 1 the rate of change of y is 3 per unit change in x; in				
	table 2 the rate of change of y is 2 per unit change in x (y				
	increases by 4 units per each increase of 2 units in x); in				
	table 4 the rate is 4 per unit change in x. Table 3 does not				
	show y increasing by a constant amount per unit change in				
	x. Tables in earlier investigations in this unit generally show				
	the independent variable increasing in 1 unit increments,				
	while y increases or decreases.				
Linear Relationship between 2 variables: Is	2. Are the relationships represented in the following tables				
	inear relationships? If so, what is the constant rate of				
The table, when the dependent variable	change?				
changes by constant increments for					
constant increments in the independent					
I ne graph, when the coordinate points					
form a straight line, and from					
I ne equation, when the relationship can be					
represented by an equation of the form					
y = mx or $y = mx + b$, and from The number constant where there is an	3 9 3 3 2 -5 11 21				
I ne problem context when there is an					
undenying constant rate of change.	The pattern in the first table is not linear an element of				
Connections among Depresentations. The	The pattern in the first table is not linear —as <i>x</i> increases				
connections among kepresentations: The	one unit there is not a constant rate of change in <i>y</i> . This				
constant rate of change shown in the table appears					

on the graph as the steepness of the line, negative rates sloping down from left to right, positive slopes sloping up, and faster (greater) rates shown as steeper lines. The constant rate of change also appears, in the equation that describes the relationship, as the coefficient of the x-term.	pattern can be represented as $y = x^2$. (This pattern is studied in the <i>Frogs, Fleas, and Painted Cubes</i> unit.) The second pattern is linear. The constant rate of change is 0 and the equation is $y = 3$. The third pattern is also linear. The constant rate of change is -3; the equation is $y = -3x +$ 1. The fourth pattern is also linear. The constant rate of change is 2; the equation is $y = 2x - 1$. (Note in the last table, the increments in <i>x</i> are not equal, but the rate of change depends on increments in <i>both</i> x and y.)
	If students graph the coordinate pairs in the tables they can see that the points from the second, third and fourth tables lie in straight lines , and that the steepness of the line, and direction of the slope reflects the rate of change. (The line is "flat" for table 2, sloping down for table 3, and sloping up for table 4, but not as steep as for table 3.)
	<i>3. Suppose the cost to rent a number of bikes from a company is \$150 plus \$10 per bike. Can we tell from the context whether the relationship between number of bikes and cost is linear or not?</i>
	We first recognize that there is a <i>constant rate</i> being charged for the bicycles, so there will be a linear pattern in the relationship between cost and number of bicycles. The constant rate of change is 10. This constant rate appears in the symbolic representation; we write $C = \$150 + \$10n$, where <i>C</i> is the cost in dollars and <i>n</i> is the number of bikes. (The rate also appears in a graph of the relationship, as the steepness of the graph. And it appears in a table showing different costs for different numbers of bikes rented.)
Y-Intercept: is the point where the straight line crosses the y-axis (vertical axis). It has x- coordinate 0, and therefore is a representation of the point in the table where the independent variable is 0. To find the y-intercept we can i) Obtain it from the verbal situation, or ii) Read it from a graph or table, or iii) Work backward or forward in a table to find the point $(0, b)$, or iv) Find it by substituting the slope and one of the points into the equation $y = mx + b$ and then solving for <i>b</i> .	 4. What is the y-intercept in the bike rental problem in example 3 above? In the bike rental example above we can see that when 0 bikes are rented there is still a base cost of \$150, so this is the y-intercept, (0,150).

	5. What are some other ways we can find the y-intercept in the bike rental problem above?						ot in	
	The bike rental problem might have been presented in form of a table or graph that did not show the y-interc <i>instead</i> of as a verbal description:							
	# 5 10 20 30 bikes 5 10 20 30							
	bikes		200	250	250	450	-	
	in \$		200	250	300	400		
	Using what they know about ratios, what they see in the table, and assuming that the rental cost per bike is a constant rate, students can reason, using the difference between the first two entries, that the rental cost per bike is \$10; then can count backwards from the cost of 5 bikes to find the cost of 0 bikes. Or they might use the difference between the costs for 5 bikes and 10 bikes to reason backwards in a larger step. Either way they arrive at the pair (0, 150) for the y-intercept.						e is s to	
Solutions from Table or Graph: Since each coordinate point on a graph of a relationship represents a coordinate pair from the table, and since the regularity of the linear pattern means we can "complete" a table or graph, we can find missing values of y, given x, or missing values of x, given y.	<i>6. How c</i> <i>table give</i> We can fi informatic the cost fu additional "What is t 10(7).	an we fig on in exam nd the co on is miss or 5 bikes bike. Th he cost fo	ure the comple 5 ab	ost of ren ove? ting 7 bike the table, ant incren solution f	ting 7 bike es, even t by counti nents of \$ for the qu equation,	es from the hough this ng on fror 10 per iestion , C = 150 +	e s n	

7. How can we figure how many bikes we can rent for \$500 (see examples 3, 4, 5, 6 above) from a graph?

We could graph the information in the table in example 5 and extend a line through the points to read other coordinate pairs, such as (?, 500) which would represent the number of bikes that can be rented for \$500. This is the solution for the question, "How many bikes can be rented for \$500?" or the equation, 500 = 150 + 10x. The crucial understanding is that each point on the graph, and each pair in the table, satisfies the underlying linear relationship that has a constant rate of increase of 10, and a y-intercept of 150.

Intersection Point: is the point where 2 lines meet and, therefore, a coordinate pair that fits both relationships represented by the lines.	8. Compare two bike rental plans, one described by the equations $C = 150+10x$, and the other by $C = 200 + 8x$. Which rental plan costs more for 30 bikes? Is there ever a number of bikes where the cost is the same for both companies? If we graph both of these relationships we will have a pair of lines that share the point (25, 400). This point satisfies both relationships, therefore the cost is \$400 for 25 bikes for both plans. This is the only point on both lines, so is the only time that the costs are the same for both plans. 450 50 50 50 50 50 50 50 50 50
	8x costs more.
Solutions from Symbolic Equation: Since each pair of related values must fit the equation representing the relationship, we can find a missing value of a variable by various strategies, including "undoing," "balancing," or "guess and check." The key to solving equations symbolically is understanding equality; equality is a statement that states two quantities are equal. Equality can be thought of as a "balance." To solve an equation means that we want to maintain the equality between the two quantities. Properties of equality: We can add, subtract, and multiply or divide (by a non-zero number) both sides of the equation and maintain equality.	9. For the original bike rental plan described by $C = 150 + 10x$, how many bikes can we rent for \$500? In this question we are asked to solve for one of the variables, x, when we are given a value for the other variable, C; or we are asked to solve a linear equation with one variable or "one unknown". We could find the information by using a table or graph as explained above, or we can find the value of the variable by solving $500 = 150 + 10x$ by symbolic methods. Students might reason by "working backwards" or "undoing" that if $10x + 150 = 500$ then $10x$ must be 350 (cost of x bikes without base charge), and so x (number of bikes) must be 35 .

10. Compare the two bike rental plans, $C = 150 + 10x$ and $C = 200 + 8x$. Which one is cheaper for 30 bikes? We can make this comparison graphically as explained above, or symbolically by solving $C = 150 + 10x$ and $C = 200 + 8x$ simultaneously. This means that we want to know when the Caste are equal we want to find the value
of x that makes 150 + 10x = 200 + 8x. "Working backwards" is not as productive as "balancing" for this equation format, where the variable is on both sides. By subtracting 150 from both sides we have
10x = 50 + 8x. By subtracting 8x from both sides we have 2x = 50. By dividing by 2 we have x = 25. This means that when the number of bikes is 25, the costs
for both plans are equal. For any number of bikes greater than 25 the plan with the smaller rate of change (or lesser slope) will be cheaper. (In this unit we only solve equations of the following types: 6 - 3x = 10; $5 + 17x = 12x - 9;$ $2(x + 3) = 10)$

Connections among representations of solutions: Each pair of related values in a table of a linear relationship appears as a point on a graph of the line, and as a solution that makes the equation representing the relationship true. Thus each point on a line represents a particular linear equation and its solution, and vice versa. (An intersection point of 2 lines simultaneously satisfies 2 relationships and 2 equations.) 11. Find the solution to the question "How many bikes can be rented (on the original plan, C = 150 + 10x) for \$500?" graphically and from a table.

The solution appears as a single point on the graph of C = 150 + 10x. The solution is (35, 500); we can rent 35 bikes for \$500.

The solution also appears as a pair in an extended table. Students can complete the table counting in increments of 1 bike and \$10 at a time to (35, 500), or in greater increments, say 5 bikes and \$50 at a time.

#	0	1	 ?
bikes			
Cost	150	160	 500
in \$			

Note: students have three ways to picture and solve 500 = 150 + 10x. They learn to choose the most convenient way; symbolic methods are quick, but only when the equations are simple; graphical methods always work, but may be hard to read exactly; table methods work but may be tedious.

Slope of a Line from Table or Graph: can be	12. Suppose the points $(1, 4)$ and $(3, 10)$ lie on a
calculated by finding the ratio of the change in the	line. Find the slope of that line.
dependent variable to the corresponding change in	, ,
the independent variable, or the ratio of the vertical	The slope is the ratio
change on the graph (rise) to the corresponding	change in vertical distance
borizontal change (run). The slope is a visual	
representation of the rate at which y is changing in	change in horizontal distance
representation of the rate at which y is changing in	10 - 4
relation to x.	$=\frac{-1}{3-1}$
	$=\frac{6}{-}=\frac{5}{-}=3.$
	2 1
	Note that the connection to constant rate is:
Parallel Lines: have the same slope	As x goes from 1 to 3 the change is 2. (horizontal
Dorpondicular lines: have slopes which are	change)
apposite registregele of each other	As v noes from A to 10 the change is 6 (vertical
opposite recipiocais of each other.	change)
	That is, as webendes 2 units, webendes 6 units
	That is, as x changes z units, y changes o units
	or as x changes 1 unit, y changes 3 units.
	6 / 6 OR 6 / 1
	2 4 6 8 10 2 4 6 8 10

Equation of Line : can be found given slope and intercept, or slope and a point, or 2 points. Any two points on a line define the slope, which is constant for any particular line, and there is only one line with a particular slope through any given point.	13. Supp passes th line? We can " using the increase -19). We format "y	ose we ki brough (7, count bac fact that of 1 in x. then kno = mx + b	now that a 2). What kwards" t the y incre This give w the " <i>m</i> "	a <i>line has</i> <i>is the eq</i> o the y-in eases by s us the y and the "	<i>slope 3 a</i> <i>uation o</i> tercept, 3 for even <i>-</i> intercep <i>b</i> " in the	and f the ry t (0,
	x	0		6	7	
	Y	-19		-1	2	
	Or we co mx + b, w that (7,2) m = 3, an this equa The equa through (14. What through the The slope $\frac{10-4}{3-1} = 2$ intercept X Y Or, stude intercept. axis. The work from until they Or they m then subs 4), into th 4 = 3(1) + Thus the	uld use th <i>i</i> here we is on the d 2 = $3(7, 1)$ tion. Solve ation of tl 7, 2) is $y = \frac{1}{2}$ <i>is the eq</i> <i>he two pc</i> <i>e</i> , using th 3. Counti is (0, 1). 0 ? nts might They ext y might un a point of hit the <i>y</i> - hight find e equation <i>b</i> . From	The symbol know that line. Thu) + b beca ving this g ne line wi = $3x - 19$. Wation of <i>p</i> attack of ng backw <u>Thus the</u> <u>1</u> 4 also use end the lines the ratio on the gra axis. the slope per of the gra axis. the slope per of the gra axis.	ic represe "m" is 3, s, y = 3x ause (7, 2 ives b = - th slope 3 <i>the line</i> i <i>the line the line</i> i <i>the line the line <i>the line the line the line <i>the line</i></i></i>	entation y and we k + b becau) satisfies 19. 3, passin which pa. 10. = have the is y = $3x$ 3 10 o find the proof slop or forward bove and hts, say (gives have $b = 1$	= now use 5 g sses y- + 1. y- y- e to 1 1, 1.