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Mathematics Background
Patterns of Change and Relationships

The introduction to this Unit points out to students that throughout their study of 
Connected Mathematics they have been asked to look for important relationships 
between variables, to model those relationships with algebraic expressions, 
equations, and graphs, and to use those representations to solve problems. In 
every Unit, real-world contexts have been used to motivate and make sense 
of new knowledge. This Unit, too, begins with real-world situations, in which 
students decide which quantities to investigate. They use contextual cues, such as 
measurement units, to make sense of new ideas, such as domain and range and 
inverse functions.

Working on the Investigations and Problems of this final CMP Unit will extend 
students understanding of functions and their representations to include new 
forms of mathematical notation, new families of functions, and new techniques for 
transforming expressions to equivalent forms and solving equations. It will also 
present an extension of the real-number system to the complex numbers.

The Unit objectives address a large range of topics to assure that all first-year 
algebra topics are covered by the CMP eighth-grade Units. These topics extend 
and complement coverage in the following Units:

•	 Thinking With Mathematical Models

•	 Growing, Growing, Growing

•	 Frogs, Fleas, and Painted Cubes

•	 It’s In the System

•	 Say It With Symbols

Students also make productive connections with these geometry Units:

•	 Looking for Pythagoras and

•	 Butterflies, Pinwheels, and Wallpaper

The Unit objectives for Function Junction aim for development of student 
understanding and skill in work with the following mathematical ideas:

•	 The domain and range of functions and the f (x) notation for expressing 
functions

•	 Numeric and graphic properties of step and piecewise-defined functions

•	 Properties and uses of inverse functions

•	 Properties and applications of arithmetic and geometric sequences

•	 Relationships between functions with graphs connected by 
transformations such as translations and dilations

continued on next page
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•	 Expression of quadratic functions in equivalent vertex form and use of 
that new form to solve equations and sketch graphs

•	 A formula for solving any quadratic equation

•	 Meaning of and operations on complex numbers

•	 Use of polynomial expressions and functions to model and answer 
questions about complicated data patterns and graphs

Function, Domain, and Range

In the algebra strand of the CMP curriculum, students have studied functions 
often, beginning with the Variables and Patterns Unit of Grade 6, the Moving 
Straight Ahead Unit of Grade 7, and the various algebraic Units of Grade 8. Those 
Units have emphasized the concepts of independent and dependent variables 
and the use of equations such as y = 3x + 7 and the graphs of (x, y) value pairs to 
represent functions.

A function is a relationship between two sets of objects A and B in which each 
element x of A is assigned exactly one image element y in B. The sets A and B 
can include any sorts of objects—numbers, geometric points or shapes, events 
and probabilities, or even names of real objects. But in mathematical practice the 
term function is most commonly used to describe relationships between sets of 
numbers. For relationships between geometric points and shapes, the common 
term is transformation. For relationships between sets of objects that are neither 
numeric nor geometric, the general term mapping is often used.

Domain and Range
of y = x2

domain range

… −2, −1, 0, 1, 2, … … 0, 1, 4 …

For a function that relates each element of set A to exactly one element in set B, 
the first set A is called the domain of the function. The second set B is called the 
range of the function.

Although it is intuitively appealing to assume that the range of a function is just 
the set of all objects that are assigned as images of elements in the domain, the 
technical mathematical definition of range is not consistent from book to book. 
Often authors do not require that every element of the range serve as an image 
for some element in the domain.

Function Junction Unit Planning14
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On the other hand, some authors call the second set the co-domain of the function 
and refer to the range as exactly the set of images for elements in the domain— 
a set that is included in but is sometimes smaller than the co-domain.

For example, the function y = x2 that connects each real number with its square 
has as its natural domain the set of real numbers. The range or co-domain could 
also be the set of all real numbers or the set of nonnegative real numbers or a 
variety of other sets of real numbers (as long as the nonnegative numbers are 
included). This will be puzzling to many students. Authors who prefer the more 
inclusive definition of range (making it identical to co-domain) then define another 
term, image, to indicate the set of all objects that actually serve as images of 
elements in the domain.

To avoid all of this confusion, CMP uses the more restrictive definition of range as 
exactly the set of images for domain elements, and nothing extra. If you prefer the 
other course, you might justify a more inclusive meaning of the term range with 
this metaphor: If you shoot arrows at a target, every arrow may hit the target, but 
not all points on the target are hit by arrows!

f (x) Notation

As illustrated in the examples y = 3x + 7 and g(x) = x2 below, it is common to 
express the rules for function assignments as algebraic equations relating the two 
variables involved. However, it is also common mathematical practice to use what 
is known as function notation to record and apply those rules. A statement in the 
form f (x) = 3x + 7 asserts that for each value of a variable x the associated value of 
a variable y can be calculated by substituting the value of x in the function rule.

Function Notation

f(x) = 3x + 7

f(5) = 3 ∙ 5 + 7
 = 15 + 7
 = 22

g(x) = x2

g(5) = 25
g(–5) = 25

Meaning

For any value
of x, the function
f(x) gives a single
value of y.

For an x-value
of 5, the function
f(x) gives a 
y-value of 22.

For an x-value
of 5 or –5, g(x)
gives a value
of 25.

continued on next page
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There may be confusion about the interpretation of the function notation f (x) 
as “f times x,” since students have been using parentheses as an algebraic 
representation of multiplication. In the probability Unit What Do You Expect, 
students use parentheses to indicate probability of an invent occurring. For 
example, P(getting a head), or P(H), means the probability of getting a head 
on a toss of a coin. The parentheses do not indicate multiplication. Usually the 
context will make clear when function notation is intended and when algebraic 
multiplication is intended.

It should not be surprising if you find many students asking, “Why do we have 
to use this new notation?” When they are asked a set of questions involving 
function notation, you may find them replacing each occurrence of f (x) with the 
single letter y. The clearest early advantage of the new notation is that f (5) or 
g(-5) is convenient shorthand for the longer sentence “Find the value of y when 
x = 5,” or “Find the value of y when x = -5.”

Students will encounter some other convenient uses of function notation 
in Investigation 2 when they are asked to analyze sequences and express 
relationships between successive terms with equations relating f (n) and f (n + 1). 
Again, these notations are more succinct expressions of statements about 
relationships between terms of a sequence. (The subscript notation yn and  
yn+1 is also commonly used to relate successive terms, as shown in  
the Example.)

Example

Function Notation Subscript Notation

f(n)
f(n + 1)
f(n + 2)

yn
yn+1
yn+2

Similarly, function notation proves convenient in Investigation 3 when questions 
are asked about horizontal translation and stretching of function graphs. Such 
questions can be expressed as f (x { k) = ■ and g(kx) = ■.

Function notation is also the standard for expressing ideas in calculus.

Step and Piecewise-Defined Functions

Almost all of the functions that CMP students have encountered in prior algebra 
Units can be expressed with relatively simple algebraic expressions and smooth 
continuous graphs. (These are graphs with no sharp corners, which can be traced 
without lifting one’s pencil from the paper, as in the figure on next page.)
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There are a number of practical and theoretical situations in which a function of 
interest has a graph that is neither smooth nor continuous. In fact, many of the 
situations modeled with functions that have smooth linear or quadratic graphs 
actually involved changes of variables that occur in jumps. Other functions can 
be represented not only with familiar algebraic rules, but also with different rules 
on different parts of their domains, as in the figure below. Problems 1.3 and 1.4 
introduce examples of such step and piecewise-defined functions.

H
ei
g
h
t

Time

Step Functions
Suppose that the domain of a function f (x) is an interval on the number line that 
has been partitioned into disjoint subintervals, and that on each subinterval the 
function takes on a different constant value. Then f (x) is called a step function.

The name step function comes from the fact that graphs of such functions look 
somewhat like staircases. It is not important that students learn a technical 
definition of step functions, only that they become aware that some useful 
functions behave quite differently than the basic families that have been the 
focus of attention in prior algebra Units. The graph below shows the standard 
rounding function.

O

y

x

�2 �1 1 2

�2

�1

1

2

continued on next page
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The graph above shows values of the function that matches each real number 
between - 3 and 3 with its nearest integer. How does the function behave at the 
discontinuity points - 2.5, - 1.5, - 0.5, 0.5, 1.5, and 2.5? The standard rounding 
rule rounds up. This behavior at the ends of the steps is commonly indicated by 
drawing an open dot at the right end of each graph segment and a solid dot at 
the left end of each graph segment.

This convention is similar to that for indicating segments on a number line 
corresponding to inequalities. The graph below shows the inequality 3 … x 6 5. It 
has a closed dot at x = 3 and an open dot at x = 5.

0 1 2 3 4 5 6−1

3 ≤ x < 5

In other step function examples, the behavior at discontinuity points might be 
different. But the technique of indicating what happens at those discontinuity 
points is the same—solid dots for actual function values and open dots for points 
not on the graph of the actual function.

Piecewise-Defined Functions
In some situations for which algebraic function models would be useful, the 
behavior of the related variables is such that different rules relate the variables on 
different parts of the domain.

Suppose a car drives at a speed of 30 miles per hour for five minutes and 
then at a higher speed of 60  miles per hour for ten minutes more. The graph 
showing distance as a function of time will have two straight pieces with different 
slopes—0.5 mile per minute for the first segment and 1.0 mile per minute for the 
second segment. While a very accurate model would have to account for some 
period of acceleration from 30 to 60 mph, a line with pieces of different slope 
would be a reasonably accurate model. The graph below represents distance as a 
function of time.
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d(t) = t – 2.5
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Speed is 1.0 mile per minute.

Speed is
0.5 mile
per minute.
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Because the function has different rules on different parts of its domain, it is said 
to be a piecewise-defined function, or simply a piecewise function. Once 
again, it is not critical that students learn a technical definition of such functions, 
only that they realize such relationships can indeed satisfy the definition of a 
function and that they can be quite useful models for problem situations.

Inverse Functions

Consider the two linear functions f (x) = 3x + 7 and g(x) = x - 7
3  and their effects on 

some sample pairs of values:

f (0) = 3(0) + 7 and g(7) = 7 - 7
3

f (0) = 7 and g(7) = 0

f (1) = 10 and g(10) = 1

f (4.5) = 20.5 and g(20.5) = 4.5

f ( - 6) = - 11 and g( - 11) = - 6

In general, if f (a) = b, then g(b) = a.

Because of the special relationship between the two functions, g is called the 
inverse function of f.

Definition
In general, if f is a function with domain A and range B, g is a function with 
domain B and range A, and g(f (x)) = x for all x in A, then g is the inverse of f.

The function g reverses the assignments of f, and this operation can be very useful 
in answering questions about the original function. For example, suppose that a 
school fundraising project sells spirit week T-shirts for +10 apiece. The function  
f (x) = 10x gives income from the sale of x shirts. The inverse function g(x) = x

10 tells 
the number of shirts sold if the income is +x.

Terms and Notation
The fundraiser income example illustrates the rationale for using the term inverse 
to describe the relationship between the two functions. It connects with students’ 
earlier experience in describing multiplication and division as inverse operations. 
(Addition and subtraction are also inverses.)

It is quite possible that students will confuse an inverse functions with inverse 
variation functions (which have rules in the form f (x) = k

x. Make sure that they 
recognize that the -1 in the inverse function f -1(x) is not an exponent. In other 
words, it is in general not true that f -1(x) = 1

f (x). You and your students will have to 
train yourselves to remember that meaning depends on context.

continued on next page
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Clarifying Notation
One final issue in notation for inverse functions has to do with letter names of 
variables. In the T-shirt example described above, it would be natural to use the 
variables I and n to indicate income and number of sales. It is helpful to use I as 
the name of the income function as well, so I(n) = 10n. What does one write for 
the inverse function? The domain of I is the set of whole numbers of T-shirts and 
the range is the set of multiples of +10. The inverse function I -1 does not operate 
on the variable n, so I-1(n) does not make sense.

There are at least two ways to avoid this notational confusion. One is to avoid 
function notation and simply write the relationships between variables in equation 
form (below left). Another is to use generic function notation and connect to the 
variables (below right)

Without Function
Notation

With Generic
Function Notation

 I = 10n
n = I

10

 I = f(x) = 10x
n = f –1(x) =  x

10

In the second approach, the letter x is simply being used to show how one uses 
values of the input variable of the function to calculate outputs, not to indicate any 
particular variable. So the x in f (x) = 10x is referring to a different variable than the 
x in f -1(x) = x

10.

Restricted Domain and Range
Every linear function has domain and range that are all real numbers, and every 
nonconstant linear function has an inverse with the same domain and range. 
However, finding inverses for many nonlinear functions introduces complications 
that require care in defining domains and ranges.

For example, the basic quadratic function q(x) = x2 is has all real numbers as its 
domain. The function, however, takes on only nonnegative real-number values as 
its range. Furthermore, if one is told that q(x) = 9, the value of x could be either  
3 or -3. The inverse relation q-1(x) is not well defined, as shown below.

O 1 2 3 4

−2

−1

1

2
y

x
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If one restricts the domain of q(x) = x2 to the nonnegative real numbers, then 
q-1(x) = 2x is unambiguous and the inverse function is well defined.

Domain restrictions are needed to assure well-defined inverses for some other 
familiar functions.

Example
The function v(x) = ƒx ƒ , below, has as its natural domain all real numbers, but 
an inverse can only be well defined if the domain is restricted to either the 
nonnegative or the nonpositive numbers.

O–1–2 21

1

2

v(x)

x

Finding Rules for Inverse Functions
As a practical matter, in finding inverse function rules, the equation format for 
function representation is generally most helpful. For example, if y = 3x + 7, 
then finding the inverse means finding a way to calculate x when given y. Solving 

the given equation for x in terms of y yields x = y - 7
3 . So if y = 3x + 7, then 

f -1(x) = x - 7
3 . Once again, the generic use of the letter x to indicate the 

input variable for any function might be puzzling to students who have grown 
accustomed to thinking about variables as numbers with context.

Arithmetic and Geometric Sequences

Many important quantitative variables change values in discrete steps that can 
be labeled in order with positive whole numbers. Students have been asked to 
find patterns in such number sequences since the early elementary grades. The 
Problems of Investigation 2 in this Unit focus on two particular types of number 
patterns—arithmetic and geometric sequences.

Informally, a sequence is an ordered list of objects. In mathematics, the order is 
established by attaching whole numbers to the objects with a function. If such a 
sequence-defining function f (n) has the positive integers as its domain, then the 
terms of the sequence are the output values of the function. The value of f (3) is 
called the third term of the sequence, and f (n) is called the nth term (below left).  
In mathematics, it is also common to indicate terms of a sequence with single 
letters to which subscripts have been attached (below right).

continued on next page
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Function Notation Subscript Notation

f(1), f(2), f(3),… f(n) y1, y2, y3,… y(n)

Third term

nth term

In much of mathematics, the word sequence means a list with an infinite number 
of terms. A list with a finite number of terms is generally called a finite sequence. 
However, there is no reason here to make this distinction with students. You may 
use the term sequence to mean either an “infinite” or a “finite” list, for which 
the term finite sequence can be used for emphasis in cases in which the list is 
obviously intended to be finite.

An arithmetic sequence is a sequence of numbers with the property that the 
difference between successive terms is constant. This relation can be written as 
f (n + 1) - f(n) = k for all n and some constant number k (below left).

A geometric sequence is a sequence of numbers with the property that the 
ratio of successive terms is constant or that g(n + 1) , g(n) = k for all n and some 
constant number k (below right). Students will probably quickly notice the patterns 
in examples of the two types of sequences. These rules, which define each term of 
a sequence as a function of the previous term, are called recursive rules.

Arithmetic Sequence Geometric Sequence

f(n + 1) = f(n) + k g(n + 1) = g(n) ∙ k

The number pattern that begins 0, 10, 20, 30, 40, 50, . . . has a fourth term  
f (4) = 30, and this list appears to be the start of an arithmetic sequence with 
constant difference 10 between successive terms. In elementary mathematics 
courses, the expected answer is that the sequence will continue as 60, 70, 80, and 
so on. However, students might see different continuation patterns depending on 
prior experience. In fact, if one thinks of the pattern as yard markers on a football 
field, the next terms would be 40, 30, 20, 10, and 0.

For any arithmetic sequence, there is a closed-form rule for finding the value of 
the nth term (below left). For any geometric sequence, there is a closed-form rule 
for finding the nth term (below right).

Closed-Form Rule for
Arithmetic Sequence

Closed-Form Rule for
Geometric Sequence

f(n) = f(1) + (n – 1)b f(n) = f(1)bn–1

Function Junction Unit Planning22
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These two sequence formulas are, of course, special cases of linear and 
exponential functions, with the domain restricted to positive whole numbers.

In many applications of arithmetic or geometric sequences, it is natural to 
be interested not only in the individual terms, but in the sums of terms. For 
any sequence with terms a(1), a(2), a(3), . . . there is a related sequence of 
partial sums S1, S2, S3, . . . The terms in that associated sequence are defined 
as follows:

S1 = a(1)

S2 = a(1) + a(2)

S3 = a(1) + a(2) + a(3)

and so on.

We address the concept of arithmetic and geometric series only in Extension 
Exercises 29 and 30 of Investigation 2. Not surprisingly, there are formulas for 
calculating the terms of both kinds of sequences.

Formulas
For an arithmetic sequence with terms a(1), a(2), a(3), . . . the nth term of the 
related sequence of partial sums is as below.

Sn = n
2 [2a(1) + (n - 1)d] = n(a(1) + a(n)

2 )
The sum of the first n terms of any geometric sequence with first term a(1)  
and common ratio r relating successive terms is given by the formula 
Sn = a(1)(1 - r n

1 - r ) . The derivation of these formulas is an appropriate topic for  
an advanced algebra course.

Transforming Graphs, Expressions, and Functions

The overarching goal of Problems in Investigation 3 of this Unit is to show how 
many families of functions can be derived from and related to a small number of 
simple examples.

Example
In nearly every branch of mathematics there are some basic elements from 
which the richness of other examples can be derived. The whole numbers can 
be generated from 1 by successive addition of 1 or from the prime numbers 
by multiplication. All convex polygons can be partitioned into triangles. 
Probabilities of compound events can be calculated by arithmetic operations on 
simple events in a sample space.

continued on next page
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The graph and expression of any linear function represent the effects of 
transforming y = x. The graph and expression of any quadratic function represent 
the effects of transforming y = x2, and so on.

With an eye on future developments, the examples in Investigation 3 emphasize 
transformative effects on quadratic functions and their graphs. These ideas were 
explored in Butterflies, Pinwheels, and Wallpaper, Moving Straight Ahead, and 
Stretching and Shrinking. But the principles involved are quite general, as is shown 
below. Visit Teacher Place at mathdashboard.com/cmp3 to see the image gallery.

If the graph of a function g(x) can be obtained from that of a function f(x) by a vertical
translation with the rule (x, y)   (x, y + k), then the rules for the two functions are related
by the equation g(x) = f(x) + k.

In this example, the graph of g(x)
can be obtained from that of f(x) by
translating the graph of f(x) down 5
units. So, f(x) = x2, k = –5, and
g(x) = x2 + (–5), or g(x) = x2 – 5.

O

y

O–4 –2

4

2

–4

–2

2 4

x
f(x) = x2

g(x) = x2 – 5

1. Vertical Translation: g(x) = f(x) + k

O

y

O–4 –2

4

2

–4

–2

2 4

x

f(x) = x2

g(x) = – 2x2 

If the graph of a function g(x) can be obtained from that of a function f(x) by a vertical stretch
or shrink with the rule (x, y)   (x, ky), then the rules for the two functions are related by the
equation g(x) = kf(x). In the case that k is negative, the transformation also involves reflection
across the x-axis, but the relationship of function expressions is the same.

In this example, the graph of g(x) can be
obtained from that of f(x) by vertically
stretching the graph of f(x) by a factor
of –2. So, f(x) = x2, k = –2, and g(x) = –2x2.

Note: If �k� > 1, multiplying the y-value of each point by k causes the points on the transformed
graph to be farther from the x-axis than those on the original graph are. This results in a graph
that is stretched vertically. Students may struggle to see this as a stretch because the resulting
graph appears narrower than the original.
Conversely, if �k�  < 1, the points on the transformed graph are closer to the x-axis than those on
the original graph, resulting in a vertical shrink.

2. Vertical Stretch or Shrink: g(x) = kf(x)
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If the graph of a function g(x) can be obtained from that of a function f(x) by a horizontal
translation with the rule (x, y)   (x + k, y), then the rules for the two functions are related
by the equation g(x) = f(x – k).

In this example, the graph of g(x)
can be obtained from that of f(x) by
translating the graph of f(x) 3 units
to the right. So, f(x) = x2, k = 3, and
g(x) = (x – 3)2.

O

y

O–4 –2

4

2

–4

–2

2 4

x

f(x) = x2

g(x) = (x – 3)2

3. Horizontal Translation: g(x) = f(x – k)

If the graph of a function g(x) can be obtained from that of a function f(x) by a horizontal stretch
or shrink with the rule (x, y)   (kx, y), then the rules for the two functions are related by the

equation g(x) = f    . In the case that k is negative, the transformation also involves reflection

across the y-axis, but the relationship of function expressions is the same.

In this example, the graph of g(x) can be
obtained from that of f(x) by horizontally
shrinking the graph of f(x) by a factor of

–2. So, f(x) = x2, k = –2, and g(x) =       .

The original parabola has y-axis symmetry,
so its location is the same before and
after the reflection across the y-axis.

Note: If �k� > 1, the points on the transformed graph are farther to the left or right of the axis of
symmetry than those on the original graph are. This results in a graph that is stretched horizontally.
Conversely, If �k� < 1, the graph shrinks horizontally.

x
k(  )

x
–2(   )

2

O

y

O–4–6 –2

4

2

–4

–2

2 4 6

x
f(x) = x2

6

g(x) = x
–2(   )

2

4. Horizontal Stretch or Shrink: g(x) = f x
k(  )
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The graph of g(x) can be obtained from the graph of f(x) = x2 through a horizontal translation, a
vertical stretch and reflection over the x-axis, and a vertical translation.

In this example, the graph of g(x) can be
obtained from that of f(x) by translating
the graph of f(x) 3 units to the left,
vertically stretching it by a factor of –2,
and then translating it up 1 unit. So, the
equation of the resulting graph is
g(x) = –2(x + 3)2 + 1.

O

y

O–4–6 –2

4

2

–4

–2

2 4 6

x

f(x) = x2

g(x) = –2(x + 3)2 + 1

6

5. Combination

When writing the equation for a transformed graph, students need to consider the order in which
the transformations take place. The order of the transformations can affect the resulting graph.

In this example, vertically stretching the
graph of f(x) by a factor of 4, then
translating it 3 units to the right, and
then translating it 1 unit down results in
the graph of g(x).

However, translating the graph of f(x)
3 units to the right, then translating it
1 unit down, and then vertically
stretching it by a factor of 4 results in the
graph of h(x).

Note: In Function Junction, when writing an equation for a transformed graph, students should
first address any stretching or shrinking and then consider translations.

O

y

O–4–6 –2

4

2

–4

–2

2 4 6

x

f(x) g(x)

h(x)

6

6. Common Student Errors

In the case of the basic linear and quadratic functions y = x and y = x2, the effects 
of horizontal stretching and shrinking transformations of graphs and expressions 
can be accomplished as well with vertical stretching and shrinking transformations.

Example
When the graph of f (x) = x2 is stretched horizontally by a factor of 2, the 
new graph has rule g(x) = (x

2) = 0.25x2. The same result could be obtained 
with a vertical shrink by a factor of 0.25. When the graph of h(x) = x is shrunk 
horizontally by a factor of 0.5, the new graph has rule j(x) = ( x

0.5) = 2x. The same 
result could be obtained with a vertical stretch by a factor of 2.

For these reasons, and because the most powerful use of horizontal stretching or 
shrinking of graphs and expressions occurs in dealing with changes of period for 
trigonometric functions, we have addressed the horizontal stretch or shrink case 
only in Extension exercises of this Unit.
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Vertex Form of Quadratics

So far in their study of quadratic expressions and functions, students have 
learned how both standard trinomial forms (for example, x2 + 5x + 6) and 
factored forms (for example, (x + 2)(x + 3)) reveal important information about 
the related functions and their graphs. The equation x2 + 5x + 6 and its graph are 
shown below.

Standard Form and Graph
of Quadratic Function

0

1

−1−2−3−4−5 0

2

3

4

5

y = x2 + 5x + 6

y-intercept

x-intercepts

constant
term = 6

leading
coefficient = 1

linear
coefficient = 5

The leading coefficient in the standard trinomial form determines whether the 
graph will have a maximum or minimum point. (A positive leading coefficient 
indicates a minimum, and a negative leading coefficient indicates a maximum.)  
The coordinates of the y-intercept will be determined by the constant term ((0,6) in 
the example above). In factored form, the linear factors can be used to quickly find 
the x-intercepts of the graph or zeros of the function (x = -2 and x = -3 in the 
example above).

By focusing attention on how transformations of the basic quadratic y = x2 lead 
to transformed graphs, the first three Problems of Investigation 3 give clues to 
the form and location of the graph for quadratic functions expressed in what is 
called vertex form: y = a(x - h)2 + k

continued on next page
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Completing the Square and the Quadratic Formula

While the vertex form of a quadratic expression is very useful, once obtained, it is 
not a trivial task to take any standard trinomial form and transform it to equivalent 
vertex form. The process is called completing the square, because the tricky part is 
generating the (x - h)2 perfect square term.

When you try to express a quadratic trinomial in equivalent form as a product of 
linear factors, there are several possible outcomes. In some cases the result is two 
different factors, as in this case.

x2 + 6x + 5 = (x + 5)(x + 1)

In a very few instances, the result will be two identical linear factors, as here.

 x2 + 6x + 9 = (x + 3)(x + 3)

 = (x + 3)2
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The video below gives a geometrical interpretation of a perfect square trinomial. 
Visit Teacher Place at mathdashboard.com/cmp3 to see the complete video.

In most instances, however, it is not possible to write a quadratic expression as the 
product of two identical linear factors. Visit Teacher Place at mathdashboard.com/
cmp3 to see the complete video.

continued on next page
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For the cases that lead to two different linear factors, it is still possible to write the 
given quadratic in equivalent vertex form and reap the benefits of that expressive 
form. The result is the Quadratic Formula, which gives a solution to any 
quadratic equation.

x = -b
2a { 2b2 - 4ac

2a

In this formula, a is the coefficient of the x2 term, b is the coefficient of the x term, 
and c is the constant term.

Deriving this equation involves some maneuvering that is far from obvious, as is 
shown below.

Add the term           to both

sides of the equation and

rewrite it in equivalent form

to get a common denominator.

(     )
2b

2a

Taking the square root gives

two values of x +      , one

positive and one negative.

Subtracting       from both sides

of the equation leaves x by itself.

1. ax2 + bx + c = 0

Combining terms gives the usual

form of the quadratic formula.

8. x = –b ±√ b2 – 4ac 

2a

Solving a quadratic equation takes more steps when the leading

coefficient is not 1. By completing the square, it is possible to find a

general formula for solving any quadratic equation of the form

ax2 + bx + c = 0.

b
a2. x2 + x + = 0c

a Divide by a.

(     )
2b

a3. x2 + x + –b
2a + = 0 c

a(     )
2b

2a (     )
2

–b
2a (     )

2b
2aAdd                        ,

which is zero.

(     )
2b

a4. x2 + x + = –b
2a

4ac
4a2

b2

4a2

(            )
2

5. =x + –b
2a

4ac
4a2

b2

4a2 The left side is now

a perfect square.

b
2a

6. = ±x + –b
2a

4ac
4a2

b2

4a2√

b
2a7. ±x = – –b

2a
4ac
4a2

b2

4a2√
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Thus, to solve any quadratic equation, students need only substitute values from 
the given quadratic trinomial into the formula. They need to keep in mind that 
a is the coefficient of the x2 term, b is the coefficient of the x term, and c is the 
constant term.

Complex Numbers

As the Student Edition says, the quadratic formula gives an algorithm for solving 
any quadratic equation in the form ax2 + bx + c. However, when you use the 
formula to solve even fairly simple equations such as x2 + 4x + 5, you get some 
very strange results. According to the quadratic formula, the solutions to that 
equation should be these two:

x = -2 + 1-4
2 x = -2 - 1-4

2

The formula says that to find the solutions for x2 + 4x + 5 we must somehow 
calculate the square root of a negative number!

The graph of f (x) = x2 + 4x + 5 shows the problem from another view. The 
parabola does not cross the x-axis, so it seems to have no solutions.

0
−1−2−3−4 0

2

1

3

4

f(x) = x2 + 4x + 5

This equation has no
x-intercepts, so it
has no real solutions.

The kind of seemingly impossible calculation required to solve x2 + 4x + 5 
puzzled mathematicians until they decided that what was needed was an 
extension of the number system. The process began with defining a solution to 
the very simple equation x2 + 1 = 0. If x2 + 1 = 0, then x2 = -1. So x = { 1-1.

If even that simple quadratic equation is to have a solution, we need a new 
number whose square is equal to -1. Because all previous mathematics had 
suggested the impossibility of such a number, the new number was given the label 
i and called imaginary. The numbers i, 3i, and -8i are imaginary numbers.

If the number system is to be extended to include a number i with the property 
that i = -1, then some other numbers must be added as well, numbers such as 3i, 
5 + 3i, (3i)2, 2(i + 3i), - i, and many others. They are the complex numbers.

continued on next page
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In developing operations on complex numbers mathematicians made some 
assumptions about how the new numbers ought to behave. For example, 
assuming that the commutative, associative, and distributive properties carry over, 
one can reason as follows:

Addition

(a + bi ) + (c + di ) = (a + c) + (b + d )i

Multiplication

(a + bi )(c + di ) = (a + bi )c + (a + bi )(di ) Distributive Property

(a + bi )(c + di ) = (ac + bci) + (adi - bd) Distributive Property

(a + bi )(c + di ) = (ac - bd) + (bc + ad)i Simplify.

The results show algorithms for addition (and subtraction) and multiplication of 
any two complex numbers. They also indicate why any complex number can be 
expressed in this basic form.

(real number) + (real number)i

•	 The real numbers are embedded in the complex number system as 
numbers in the form a + bi.

•	 Each complex number a + bi is defined by an ordered pair of real 
numbers a and b, so it is possible to represent any complex number as a 
point on a two-dimensional coordinate grid.

•	 The operations of addition (and subtraction) and multiplication (and 
division) have geometric interpretations. Addition and subtraction can be 
conceived as translations, with the second number telling how to slide 
from the first number. The figure below illustrates adding (4 + 2i) and 
(-1 + 4i ).

x

y

6

4

2

0
0 2 4

4 + 2i

3 + 6i = (4 + 2i) + (–1 + 4i)

6

•	 The geometric interpretation of complex multiplication involves angles 
and distances from the origin in a way that is beyond the scope of 
this introduction.
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Polynomial Expressions and Functions

Linear and quadratic functions, equations, and graphs are very familiar 
mathematical tools. But there are many problems when those friendly functions 
are not good models for patterns in data and graphs. For example, no linear, 
quadratic, exponential, or inverse variation function has a graph like this:

O

y

x

�4 �2 2 4

�20

�10

10

20

local
minimum

local
maximum

Functions with more “hills and valleys” than the parabolic graphs of quadratics 
have terms involving x3, x4, and higher powers. For example, the function with 
graph shown above is f (x) = x3 + x2 - 6x + 2.

This function is in the class of functions called polynomials. Any algebraic 
expression in the form anxn + an-1xn-1 + c + a1x + a0, where n is a whole 
number and the coefficients, an, an-1, and so on, are numbers, is called 
a polynomial.

Cubic Polynomial (n = 3)

a3 = 1 a1 = –6

a2 = 1 a0 = 2

f(x) = x3 + x2 – 6x + 2

A polynomial function is one with a rule given by a polynomial expression.

continued on next page
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One of the most important characteristics of any polynomial expression is its 
degree. The degree of a polynomial is the greatest exponent of the variable 
with a nonzero coefficient. Certain polynomials of low degree have special names. 
For example, a quadratic polynomial has degree 2, a cubic polynomial degree 3, 
and a quartic polynomial degree 4.

Knowing the degree of a polynomial helps in predicting the shape of its graph and 
solutions of related equations. But for polynomials of degree greater than 2, the 
variety of possible graphs and solutions of equations is substantial.

•	 A polynomial function of degree 3 can have 0 or 2 maximum or minimum 
points (hills or valleys on its graph) and it can have 1, 2, or 3 zeros 
(x‑intercepts on its graph), as shown below.

O−4 −2 2 4

−4

−2

2

4

y

x

minimum

x-intercepts

maximum

f(x) = – x3 – x2 + 2x

•	 A polynomial function of degree 4 can have 1 or 3 maximum and 
minimum points (hills or valleys on its graph) and it can have 0, 1, 2, 3, or 
4 zeros (x‑intercepts on its graph on its graph), as shown below.

O

y

x
�4 �2 2 4

�24

�36

�48

�12

12

24

36

48
Anita

x-intercepts

maxima or minima

f(x) = x4 – x3 – 13x2 – x + 12

Polynomials of higher degree have comparably more variety in their graphs.
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Operations With Polynomials

Algorithms for operations with polynomials are structurally almost identical to those for
operations with numbers expressed in decimal form.

Algebra

(3x3 + x2 + 5x + 4) +

(2x3 + 7x2 + 3x + 5)

3x3 + 2x3 + x2 + 7x2 +

5x + 3x + 4 + 5

(3x3 + x2 + 5x + 4) +

(2x3 + 7x2 + 3x + 5)

(3 + 2)x3 + (1 + 7)x2 +

(5 + 3)x + (4 + 5)

5x3 + 8x2 + 8x + 9

Addition

Write each number in
expanded form.

Use the commutative and
associative properties
to rearrange terms.

Use the Distributive Property.

Simplify.

Convert back to standard form.

Arithmetic

(3 × 103) + (1 × 102) + (5 × 101) + 4 +

(2 × 103) + (7 × 102) + (3 × 101) + 5

(3 × 103) + (2 × 103) + (1 × 102) +

(7 × 102) + (5 × 101) + (3 × 101) + 4 + 5

3,154 + 2,735

(3 + 2) × 103 + (1 + 7) × 102 +

(5 + 3) × 101 + (4 + 5)

5 × 103 + 8 × 102 + 8 × 101 + 9

5,889

Subtraction follows a parallel algorithm.

If anything, addition and subtraction of polynomials is simpler than the comparable operations

with numbers. There is no need to worry about algebraic regrouping, similar to what is required

in numerical calculations such as 753 + 354 or 753 – 354.

Arithmetic Algebra

3,154 – 2,735
(3x3 + x2 + 5x + 4) –

(2x3 + 7x2 + 3x + 5)

Subtraction

[(3 × 103) + (1 × 102) + (5 × 101) + 4] –

[(2 × 103) + (7 × 102) + (3 × 101) + 5]

(3x3 + x2 + 5x + 4) –

(2x3 + 7x2 + 3x + 5)

Write each number in
expanded form.

(3 × 103) – (2 × 103) + (1 × 102) –

(7 × 102) +(5 × 101) – (3 × 101) + 4 – 5

3x3 – 2x3 + x2 – 7x2 +

5x – 3x + 4 – 5

Use properties of operations
to rearrange terms.

(3 – 2) × 103 + (1 – 7) × 102 +

(5 – 3) × 101 + (4 – 5)

(3 – 2)x3 + (1 – 7)x2 +

(5 – 3)x + (4 – 5)

Use the Distributive Property
to group like terms.

1 × 103 – 6 × 102 + 2 × 101 – 1 x3 – 6x2 + 2x – 1Simplify.

419
Convert back to standard

form.

continued on next page
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The required algorithm for multiplication of polynomials is also parallel to standard procedures
for multiplying numbers expressed in decimal numeration.

Arithmetic Algebra

(324)(21) (3x2 + 2x + 4)(2x +1)

6(103) + 8(102) + 4

6,804

(3(102) + 2(101) + 4)(2(101) + 1)

(3(102) + 2(101) + 4) • 2(101) +

(3(102) + 2(101) + 4) • 1

(3x2 + 2x + 4)2x +

(3x2 + 2x + 4)1

3(102)2(101) + 2(101)2(101) +

4 • 2(101) + 3(102) + 2(101) + 4

3x2 • 2x + 2x • 2x + 4 • 2x +

3x2 • 1 + 2x • 1 + 4 • 1

6(103) + 4(102) + 8(101) + 3(102)

+ 2(101) + 4
6x3 + 4x2 + 8x + 3x2 + 2x + 4

6x3 + 7x2 + 10x + 46(103) + 7(102) + 10(101) + 4

Regroup 7(102) and
10(101) as 8(102).

Multiplication

Convert back to
standard form.

Write each number
in expanded form.

Use the Distributive
Property.

Multiply the first
factor by each term
of the second factor.

Simply using
exponent rules.

Combine like terms.

Division of polynomials is also parallel to division of numbers expressed in decimal 
numeration. It is typically part of second-year algebra, so it is not included here.
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