

EHR Core Research (ECR) Virtual Poster Hall

Promoting Productive Disciplinary Engagement and Learning with Open Problems and "Just-In-Time" Supports in Middle School Mathematics

Principal Investigators: Elizabeth Phillips¹, Kristen Bieda¹, Alden J. Edson¹, Chad Dorsey², Joseph Kraicik¹ Research Assistants: Taren Going¹, Merve N. Kursav¹, Charles Fessler¹ ¹Michigan State University and ²Concord Consortium

Research Question

What is the nature of productive disciplinary engagement (PDE) and student learning of mathematics at key development points in a connected sequence of problems and lesson goals?

The Framework for PDE

- We've built on Engle and Conant's (2002) concept of PDE to develop a framework that describes student engagement in terms of student behaviors aligned with the four principles.
- · Small group work on mathematical tasks can show high, medium, or low quality of PDE based on the prevalence of student behaviors.

Problematizing

- Working towards conceptual understanding
- Disciplinary practices in mathematics
- Pushing to resolve uncertainties or get "unstuck"
- Deep uncertainties

Authority

- Using own words to discuss mathematics
- Students' ideas shape the solution path
- Credible experts in their group

Accountability

- Questioning and explaining to make sense of mathematics
- · Multiple ideas debated
- · Wide-spread collaboration

Resources

 Using digital, physical, and inter-personal resources to make sense of mathematics

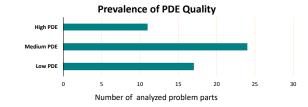
Methods

Context of the Study

- Each unit is a sequence of connected problems across 12-20 days of instruction
- Testing involved 5 teachers across 4 school each with 3-5 sections of 7th grade math

Data Sources

- Screen recordings of students' digital
- Engagement analytics for the digital workspace


Collaborative Digital Environment

- CMP STEM problem format to deepen student engagement throughout open

Analysis Procedures

- Open coding grounded in data to develop framework for students' PDE

Preliminary Findings

High levels of PDE can occur during early parts of mathematical tasks when students work on open problems and have access to digital collaborative tools

Students can develop high levels of PDE quickly on new tasks if they can draw on high or deepen throughout the lesson or unit allows for this.

When students develop higher levels of one principle for PDE, it can support the development of higher levels of another principle (illustrated in the excerpt of student

Speaker	Timecode	Utterance	Principles of PDE
Rose	35:51	So the scale factor. If it's L to N then the scale factor's going to be it's not times 3? Because if it's times 3	Problematizing: Uncertainty about how to determine correctness and justify their answer
Eva	35:59	Wouldn't it be times	
Rose	36:00	(overlapping speech) It's times 3. (pause). And for the heights it's still times 3. But for the perimeter?	Resources: Using interactive graphs to move and compare shapes
Carter	36:02	Yeah.	
Eva	36:03	That's true, because it's 3 across.	Accountability: Confirming that peers' ideas makes sense.
Rose	36:06	It's times 3. And for the heights it's still times 3. But for the perimeter?	Authority: Contributes mathematical ideas and seeking peers' ideas/expertise
Carter	36:13	It's going to be 3+3+ it's going to be 12. 12 of L go into N. This is the dumbest pencil. (pause)	Authority: Multiple students contribute mathematical ideas
Noah	36:58	It's 3 times on each side.	Accountability: Multiple students collaborating
Rose	37:01	True. And then the area's 12 times the size. So up here (pointing to another problem) we did this wrong on the first one.	Problematizing: Making connections between tasks toward conceptual understanding

Ongoing Work

- Continuing analysis of the full set of data for students' group work
- Identifying factors that allow for the development of high levels of PDE (including problem structure, teacher support, and digital resources)

This material is based upon work supported by the National Science Foundation under Grant No. 1660926. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation

