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Figure 1. Purity of mathematics across felds (Munroe, 2012). 

Some see mathematics as a pure and unadulterated very human and aesthetic considerations of those who 
expression of our logical and rational faculties. From practice mathematics (Ernest, 1991; Lakof & Núñez, 
this commonplace perspective, even heavily mathemat- 2000). Mathematics, as a body of knowledge, owes 
ical disciplines such as statistics or physics are somehow much to the art of rigorous logical argument. Rigor 
lesser chimera, beautiful refections that are none- and abstraction are manifestations of values held by 
theless impure. In truth, this perspective does a very the community of mathematicians that set norms for 
real disservice to mathematics, ignoring as it does the how mathematicians communicate with one another 
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as well as how understanding is conceived within the 
discipline. 

In this article, we seek to: (1) contribute to the breaking 
down of disciplinary boundaries between literary arts 
and mathematics by articulating the role that argument, 
as a literary convention, plays in mathematics, and (2) 
to explore how viewing mathematical argumentation 
as a genre of literature (or discourse more broadly) can 
help us see how teachers and curricula frame students’ 
engagement in argumentation in ways that have conse-
quences for students’ understanding and social practice. 
In the frst section of our article, we focus on exploring 
what it means to think about (parts of ) mathematics as 
a genre of literary argument, and we will try to fesh out 
some of the characteristics that distinguish “mathemat-
ical” argument from the broader collection of genres of 
argument. In the second section, we explore how spe-
cifc genres or subgenres of argumentation are suggested 
in curricular tasks and the implications of that framing 
for students’ understanding of the role of argumenta-
tion in mathematics and what kinds of responses they 
are expected to produce. 

Mathematics as Argumentation 
In this section, we focus on characterizing “math-
ematical” argument as a literary genre. What does 
mathematical argument look like? What kinds of social 
values does mathematical argument uphold, and how 
do those values manifest in the way such arguments 
are expressed? What are the authors of such arguments 
trying to accomplish? We explore these and other ques-
tions, frst with a narrative overview of the role argu-
ment plays in mathematics, then with a more careful 
characterization of such argument. Tis discussion lays 
the foundation for the next part of our article where we 
will highlight the implications of particular mathemati-
cal tasks through the lens of genre theory. 

A Narrative Overview of Mathematical Argument 
Te barriers between mathematics and literacy are 
not nearly so stark as they are commonly perceived; 
one could even warrant arguments for claiming these 
barriers are altogether imaginary. Mathematics, as in 
the visible work of mathematicians, is largely comprised 

of argument. Tis is of key importance in the context 
of K–16 education precisely because the standards, 
assessments, and curricula of mathematics classes 
are all constructed using the practice of mathemati-
cians minimally as a point-of-reference, and often as 
a hypothetical end goal. Mathematical proofs, con-
structed by mathematicians and published in journals 
of mathematics, are really just arguments that follow a 
specifc set of logical rules and social norms, but they 
are the standard against which all mathematical prac-
tice and curricula is measured and understood. Each 
proof is a pyramid of claims and arguments supporting 
those claims carefully constructed to verify, explain, 
systematize, discover, communicate, or sanction 
(Hanna, 2000) a proposed mathematical fact. Even 
the less formal work of mathematicians and the broad 
array of practitioners of mathematics (e.g., engineers, 
statisticians, students) can typically be characterized 
as argument, albeit usually with lower bars of rigor or 
modifed social norms. In the context of K-12 class-
rooms, there is often pedagogical value in foreground-
ing the value of understanding and communication 
in mathematical discussions over the value of formal 
rigor (sanctioning) or systematization; in other words, 
making space for rough draft reasoning and experimen-
tation at the expense of strict and unabated adherence 
to rigid logical form and function. Mathematical 
discourse, written and spoken, is often intended to con-
vince either oneself or others of the truth of some claim 
through appropriate justifcation and argumentation. 

Characterizing Mathematical Argument 
What makes argumentation in mathematics diferent 
from argumentation present in an essay, a piece of 
journalism, or a historical treatise? What makes an 
argument “mathematical”? It may be natural to point at 
mathematical symbols and Greek letters and proclaim 
that these are features that render an argument mathe-
matical. Arguing this way puts at the center of a genre 
of writing its form and features. Genre theory, how-
ever, informs us that although textual features can be 
constituent parts of a specifc genre, a genre is “centered 
not on the substance or the form of discourse but on 
the action it is used to accomplish” (Miller, 1984, p. 
151). With this in mind, we believe that mathematical 
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argumentation is not so diferent from argumenta-
tion in other disciplines. Specifcally, argumentation 
in mathematics and English classes share more than 
separates them. 

What action is mathematical argumentation sup-
posed to accomplish? Standards, assessments, and 
curricula of mathematics are typically designed to make 
students more like mathematicians in the way they 
argue. Tus, the manner in which mathematicians view 
argumentation merits attention as a point of reference. 
In pursuit of this reference point, let us observe the 
signifcance mathematicians place upon arguments: 

By concentrating on what, and leaving out why, 
mathematics is reduced to an empty shell. Te art 
is not in the “truth” but in the explanation, the 
argument. It is the argument itself which gives the 
truth its context, and determines what is really 
being said and meant. Mathematics is the art of 
explanation. (Lockhart, 2009, p. 5) 

Tis quote suggests a key feature of how mathema-
ticians view arguments (the why) in relation to their 
conclusions (the what): the argument that leads to a 
theorem is often found to be more riveting than the 
theorem itself. Accordingly, an argument ideally serves 
two main functions in mathematics: (1) as its Latin 
root suggests, an argument should preferably prove a 
result; and (2) an argument should provide the reader 
with some form of insight. As pointed out, it is argu-
ably the latter purpose that excites mathematicians 
more. Arguments link ideas, connect what was not 
connected, and give rise to new ideas. An argument 
that proves a theorem but lacks new insights is often a 
disappointment for mathematicians. 

How does argumentation in mathematics compare 
to argumentation in literacy? Consider the follow-
ing standard from the Common Core State Standards: 
“Write arguments to support claims with clear reasons 
and relevant evidence” (National Governors Associ-

ation Center for Best Practices & Council of Chief 
State School Ofcers, 2010, p. 42). Is this a mathemat-
ics standard or an English language arts and literacy 
standard? It is, in fact, the English language arts and 
literacy standard CCSS.ELA-LITERACY.W.6.1.1  Te 
fact that this standard could be both a mathematics and 
an English language arts and literacy standard illustrates 
that the lines between argumentation in mathematics 
and literacy are blurry at best. More specifcally, this 
literacy standard demonstrates that one of the purposes 
of a literary argument is to prove a claim, much like for 
a mathematical argument. 

What about the second purpose of arguments in math-
ematics to provide the reader with insight? We believe 
that this is also a purpose of arguments in literacy. If 
we look at the distribution of communicative purposes 
found in the Writing Framework for the 2011 National 
Assessment of Educational Progress (National Assess-
ment Governing Board, U.S. Department of Educa-
tion, 2010), we see that as students get older and are 
expected to move closer to expert behavior, the expec-
tation is that their writing shifts from the conveying of 
experience (the what) to persuasion and explanation 
(the why). As in mathematics, we see evidence that the 
focus on why an argument is true takes on a prominent 
role in literacy. 

We hope that at this point you will agree that the 
purposes of argumentation in mathematics and liter-
acy are nigh identical. As a matter of fact, you may be 
wondering, is there any diference between the genres 
of mathematical and literary argumentation—textual 
regularities (i.e., form) aside? We believe that there 
is only a subtle diference which relates to the form 
persuasion takes. As noted in the Writing Framework 
for the 2011 National Assessment of Educational Progress 
(National Assessment Governing Board, U.S. Depart-
ment of Education, 2010), persuasion is a communica-
tive purpose of writing that is exceedingly emphasized 
as students progress through school. Te author of a 

1 CCSS.ELA-LITERACY.W.6.1 is identical to CCSS.ELA-LITERACY.W.7.1 and CCSS.ELA-LITERACY.W.8.1. 
Furthermore, CCSS.ELA-LITERACY.W.6.1 is the essence of CCSS.ELA-LITERACY.W.9-10.1 and CCSS. 
ELA-LITERACY.11-12.1. 
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mathematical argument, however, rarely sets out to be 
persuasive in any colloquial sense; the logical validity 
of a mathematical argument supplants all necessity for 
traditional persuasiveness. Persuasion is essentially “out-
sourced” to logic. Yet, we would like to make explicit 
one caveat: mathematicians are not ignoring persua-
sion, they are simply persuaded within a diferent set of 
social values and norms. For instance, the prominence 
of the author or adherence to mathematical norms and 
conventions may persuade readers that a mathematical 
argument is valid even when it is not. We view this, 
however, not as a feature of mathematical proof but, 
rather, of human nature. In summary, if we consider 
a genre not by its textual features but by its purpose, 
argumentation in mathematics and argumentation in 
literacy are closely related genres whose only diference 
may be the norms of persuasion. 

In this section, we have attempted to highlight both 
how argumentation in mathematics and literacy is sub-
stantively similar, and to describe some of how math-
ematical argumentation is uniquely “mathematical.” 
In the next section, we use genre theory to critically 
examine implied curricular genres and subgenres with 
an eye for how they present opportunities for students 
to engage in argumentation. We then discuss how these 
opportunities both empower students to understand 
argumentation’s role in doing mathematics as well as 
limit students’ agency for authoring mathematical 
knowledge. 

Mathematical Tasks and the 
Implications of Genre 

We would now like to illustrate the nature of a mathe-
matical argument in the setting of middle school math-
ematics by analyzing a task sequence for one of the most 
well-known theorems in mathematics: the Pythagorean 
Teorem. We present examples of students’ experiences 
with mathematical argument not only because the 
Pythagorean Teorem is a well-known mathematical 
theorem, but because it is often the place where mathe-
matics textbooks introduce norms of formal argumen-
tation to students. In this section, we will present task 
sequences from students’ study of the Pythagorean Te-

orem: one sequence from an early version of a textbook 
series and one sequence from a later version of the same 
textbook series. We will analyze how the presentation of 
tasks and the wording of prompts for student responses 
evokes a particular genre of mathematical argumen-
tation and discuss the potential implications for stu-
dents’ understanding of mathematical argumentation. 
Further, we will highlight how shifts in the prompts 
between versions which emerged due to the publication 
of the Common Core State Standards for Mathematics 
(CCSSI, 2010) potentially changes how students engage 
with producing arguments to justify the Pythagorean 
Teorem. Our goal is to draw attention to how the 
sequencing of tasks and the particular words used in 
prompts shape students’ understanding of the genre of 
mathematical argumentation. 

Te Pythagorean Teorem states that for any right 
triangle, the sum of the squares of the legs (i.e., the two 
sides that meet to form the right angle) is equal to the 
square of the length of the hypotenuse (Figure 2). 

c b 

a 

a2 + b2 = c2 

Figure 2. Representation of the Pythagorean Teo-
rem (Baelde, 2013). 
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One of the possible reasons this theorem is well-known 
is that it is often the context for students’ frst encounter 
with proof. Many diferent representations of proof exist 
for the theorem; there are over 300 known proofs of the 
Pythagorean Teorem (for one example, see Figure 3). 

Figure 3. A picture proof of the Pythagorean Teo-
rem (Faulk, 2014). 

Te task sequences we present below come from two 
editions of the Connected Mathematics Project (CMP 
1/CMP 3) curriculum (Lappan, Fey, Fitzgerald, Friel, 
& Phillips, 1997; Lappan, Phillips, Fey, Friel, Grant, 
& Stewart, 2014). CMP 1 and CMP 3 were written to 
align with recommendations in the National Council 
for Teachers of Mathematics Principles and Standards 
for School Mathematics (2000) and CMP 3 incorpo-
rates recommendations from the Common Core State 
Standards (CCSSI, 2010). CMP is the most widely 
used middle school curriculum in the world and has 
been shown to have a relatively high percentage of 
problems that engage students in mathematical rea-
soning and argumentation (Stylianides, 2009). In both 
editions, students’ work with the Pythagorean Teorem 
occurs in a series of investigations in a CMP textbook 
entitled Looking for Pythagoras. 

CMP 1: Puzzling Toward a Rule 
At the beginning of the Looking for Pythagoras unit in 

the frst version of the curriculum (CMP 1), the CMP 
authors ofer the following description of the learn-
ing goals for the unit: “In Looking for Pythagoras, you 
will explore an important relationship among the side 
lengths of a right triangle.... Te unit should help you 
to…..understand and apply the Pythagorean Teorem.” 
(Lappan et al., 1997, p. 4) In the frst lesson, students 
explore and calculate distances between points placed 
on a dot grid (Figure 4). 

Figure 4. One square unit on dot grid (Auer, 2013). 

In the next lesson, students explore how to fnd areas 
of polygons drawn on the dot grid by studying the 
connection between the side lengths of the shapes and 
their area. Tis exploration helps students understand 
the concept of a square root; to fnd the length of a side 
of a square, you would frst compute the area (area = 
length x width) by counting the number of one square 
units inside the polygon drawn on the dot grid. Ten, 
since the length and the width of the square are the 
same, you can take the square root of the value for 
the area to fnd the side length of the square. Students 
can then use the dot grid to fnd the length of any line 
segment by frst constructing a square with the segment 
as a side length and then calculating the area of the 
square. 

In the homework problems for this lesson, we begin to 
see students being invited to think about general cases 
and to construct arguments that are initially grounded 
in their own understanding and sense-making: 

“Find every possible area for a square drawn by 
connecting dots on a three-dot by three-dot grid.” 
(Lappan et al., 1997, p. 22) 
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“Find the areas of triangles AST, BST, CST, and 
DST. How do the areas compare? Why do you 
think this is true?” (Lappan et al., 1997, p. 23) 

Tis lesson sequence prepares students to think about 
measures of all the side lengths of right triangles: the 
two legs and the other side opposite the right angle 
(called the “hypotenuse”). Te dot grid makes it possi-
ble to generate measurements without using a ruler. By 
asking students to think about “every possible” area for 
a square drawn, they must grapple with conceptualizing 
the range of cases that would apply in this situation, 
asking themselves questions like: “Is this everything? 
What would not ft in this set?” Here we see the initial 
invitations to forming a generalization. Articulating 
generalization is not only an important part of stu-
dents beginning to understand abstract mathematical 
ideas, but it is also a core social value of the discipline 
of mathematics. In creating mathematics as a body of 
knowledge, mathematicians primarily concern them-
selves with phenomena that apply to many cases such 
as mathematical ideas and procedures that work for all 
numbers. In the context of literacy, we can also think 
of generalization as an outcome of synthesizing infor-
mation to draw a conclusion (CCSS.ELA-LITERACY. 
WHST.6-8.1.B) “Support claim(s) with logical rea-
soning and relevant, accurate data and evidence that 
demonstrate an understanding of the topic or text, 
using credible sources” (CCSSI, 2010). 

Another question in this task sequence invites students 
to think about a pattern they notice in areas of triangles 
and why they think this is true. Tis question might 
have been phrased, “Show/justify/explain why the areas 
of the triangles are equal” but asking instead, “How 
do the areas compare? Why do you think this is true?” 
allows a range of students’ ideas to surface through an 
ambiguity of audience; although a student’s response 
might be viewed by a classmate or teacher, their explicit 
goal is to articulate their own sense-making and 
rough-draft thinking rather than trying to convince 
someone else. Tis rhetorical move orients the work 
of producing an argument as a response to a question 
rather than a means of completing a problem or an 
exercise. So, whom are students responding to when 

answering these questions? Implicitly there appears to 
be a dialogue between the textbook and the student, 
where the textbook issues directives (“Find every….”) 
as well as guidance for how the student is to refect 
upon their work (“Why do you think….”). In addition, 
as mentioned above, pressing students to explain why 
something is true upholds a core value held by prac-
titioners of mathematics, but the focus on a student’s 
own sense-making codes a lower expectation of “rigor” 
than would be expected in a proof. 

By the third lesson of the unit, students are ready to 
explore the Pythagorean Teorem. Te third lesson 
begins with it a guiding question: “Consider a right 
triangle with legs that each have a length of one. Sup-
pose you draw squares on the hypotenuse and legs of 
the triangle. How are the areas of these three squares 
related?” (Lappan et al., 1997, p. 27; see Figure 3 for 
a visualization of this directive). Whereas the previous 
lesson focused on thinking about side lengths and areas 
of all kinds of triangles, this lesson is focusing students’ 
attention on the relationship between the side lengths 
of right triangles. Te frst step is to have students 
construct a table comparing the lengths of legs with 
the areas of the squares constructed from the legs for 
right triangles of diferent sizes; then students are given 
a directive to generalize: “Use the pattern you discover 
to make a conjecture about the relationship among the 
areas” (Lappan et al., 1997, p. 28). 

Up to this point in the sequence, the tasks have been 
preparing students to generate a conjecture and gen-
eralize what they will learn is the Pythagorean Teo-
rem. Te prompts provided for the exercises in each 
section have been enculturating them to the norms of 
knowledge building in mathematics; mathematicians 
explore cases, notice patterns, and then provide justi-
fcations to show that those patterns are always true. 
Tese investigations crescendo to the next investigation 
titled “Puzzling through a Proof” (Lappan et al., 1997, 
p. 29). Te investigation begins by giving historical 
context to the “famous” theorem students will learn: 
the Pythagorean Teorem. Students are told that “a 
theorem is a general mathematical statement that has 
been proven true” and “over 300 diferent proofs have 
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been written for this theorem.” Hence, students begin 
this exploration knowing that the relationship that they 
have noticed is a known mathematical fact, and many, 
many proofs already exist to show that it is a fact. 

Te “Puzzling through a Proof” lesson is divided into 
four tasks (Lappan et al., 1997, p. 29): 
A. How do the side lengths of the squares compare to 

side lengths of the triangle? 
B. Fit the 11 pieces into the two frames (Figure 5). 
C. What conclusion can you draw about the relation-

ship among the areas of the three square puzzle 
pieces? 

D. What does the conclusion you reached in part C 
mean in terms of the side lengths of the triangles? 
State this relationship as a general rule for any right 
triangle with legs of lengths a and b and a hypote-
nuse of length c. 

Figure 5. A visual proof of the Pythagorean Teo-
rem (Faulk, 2014). 

We would like to highlight some key aspects of this 
part of the task sequence. First, the framing of the 
activity as a puzzle may suggest to students that there 
is only one way to show the theorem is always true, 
as jigsaw puzzle pieces only ft together in one way. 
Second, the puzzle gives a physical confrmation of 
the relationship a2+b2=c2. Mathematics educators have 
named this a generic example (Balachef, 1988), as 
no units are shown and we could assume a, b, and c 
to be any numbers. Tis observation, if left implicit, 
could support problematic notions of the nature of 
mathematical proof. It is plausible that some students 
might complete this activity and take away that the 
Pythagorean Teorem holds for this case, with these 
pieces, rather than serving as a generic prototype for 

any right triangle. Furthermore, as an argument type, 
the “puzzle” shows that the relationship holds, not why 
it is true and, despite the heading “Puzzling through a 
Proof,” students are not asked to explicitly connect the 
construction of the puzzle to an argument for why the 
rule is true. In terms of the expectations for arguments 
as specifed in the ELA CCSS, the task prompt in this 
investigation for the CMP 1 sequence on the Pythag-
orean Teorem does not ask students to articulate why 
the completed puzzle is evidence that the theorem is 
true. Part D asks them to generate a “rule,” so students 
may conclude the construction of the puzzle is to help 
them articulate the claim, or “rule,” rather than a visual 
way to show why the rule is true. 

Before we turn our attention to analyzing how this 
task sequence evolved in the third edition of CMP, we 
want to highlight some takeaways from our analysis of 
the CMP 1 sequence. In this version of the sequence, 
students are mathematically prepared to make a gen-
eralization, or construct a claim; students explore the 
connection between the side length of a triangle and 
the area of a square constructed from the side length 
of the triangle. Tis reinforces the concept behind the 
relationship between the lengths of the shorter sides 
and the hypotenuse of a right triangle that might 
otherwise not be apparent if students only examine 
patterns between values in a table and are then asked to 
generalize. Second, students have opportunities prior to 
thinking about a proof of the Pythagorean Teorem to 
justify their claims by responding to questions, rather 
than directives to produce an argument. For example, 
before they consider a proof of the Pythagorean Te-
orem, they are invited to think about sets of possible 
cases to which a relationship could apply and generate 
a response to a question prompting them to explain 
why a pattern holds for all such cases. We claim that 
responding to a question, rather than producing what 
is asked in a directive, leaves open the possibility for 
a response that explains rather than one that demon-
strates, or shows that something is true. Finally, in the 
capstone activity of the sequence, the task prompts fall 
short of asking students to explain how their actions in 
producing a proof justify the Pythagorean Teorem is 
true for any right triangle. In the next section, we will 
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see if the revised version of the task sequence extends 
the opportunities students have to generate an argu-
ment. 

CMP 3: Puzzling Toward a Proof 
After the publication of CMP 1, one of the signif-
cant changes to the policy landscape in mathematics 
education was the publication of the Common Core 
State Standards for Mathematics (CCSS-M, CCSSI, 
2010). Te CCSS includes constructing and critiquing 
arguments as a Standard for Mathematical Practice. 
Unlike the ELA CCSS, which has a number of literacy 
standards that discusses how students should construct 
viable arguments, the Math CCSS only discusses the 
criteria for arguments in a few sentences within the 
paragraph describing Standard for Mathematical Prac-
tice 3 (SMP 3): 

Tey justify their conclusions, communicate them 
to others, and respond to the arguments of others. 
Tey reason inductively about data, making plau-
sible arguments that take into account the context 
from which the data arose. Mathematically prof-
cient students are also able to compare the efective-
ness of two plausible arguments, distinguish correct 
logic or reasoning from that which is fawed, and— 
if there is a faw in an argument—explain what it 
is. Elementary students can construct arguments 
using concrete referents such as objects, drawings, 
diagrams, and actions. Such arguments can make 
sense and be correct, even though they are not 
generalized or made formal until later grades. Later, 
students learn to determine domains to which an 
argument applies. Students at all grades can listen 
to or read the arguments of others, decide whether 
they make sense, and ask useful questions to clarify 
or improve the arguments. (p. 7) 

One diference between the specifcations of the SMP 
3 and the ELA CCSS argumentation standards is the 
extent to which components of producing an argument 
are described. Te description for SMP 3 provides 
suggestions for what students should have in their 
arguments (e.g., correct logic or reasoning, concrete 
referents), but leaves open a wide range of possibilities 
for the kind of arguments students can construct. Te 

specifcity of the ELA CCSS standards for argumen-
tation as compared to SMP 3 is surprising, given the 
status of formal argument in building knowledge in the 
discipline of mathematics. 

At the beginning of the CMP 3 unit, the stated Math-
ematical Highlights are largely similar to those origi-
nally written in CMP 1, with the addition of guiding 
questions including, “What are the quantities in this 
problem?” and “Is the Pythagorean Teorem useful 
and appropriate in this situation? How do I know?” 
and “How are the side length and the area of a square 
related?” (Lappan et al., 2014, p. 4). In the section 
following the Mathematical Highlights of the unit, the 
authors discuss the CCSSM-M Standards for Mathe-
matical Practice and “habits of mind” that students will 
explore with the lessons in the unit: 

MP 1: Make sense of problems and persevere in 
solving them 

MP 2: Reason abstractly and quantitatively 
MP 3: Construct viable arguments and critique the 

reasoning of others (p. 5) 

Te text goes further to provide some guidance about 
how students could engage in MP 3: “When you are 
asked to explain why a conjecture is correct, you can: 
show some examples that ft the claim and explain why 
they ft; show how a new result follows logically from 
known facts and principles…” (Lappan et al., 2014, 
p. 5). However, consider the diferences in the types of 
arguments students would produce following these rec-
ommendations. On one hand, showing some examples 
and explaining why the examples “ft” the claim is, like 
the puzzle proof in Figure 5, an argument of the genre 
of showing that a claim is true—and, precisely, that 
we know it is only sometimes true (for the examples 
shown). 

Another similarity between the versions is that students 
begin the unit with explorations of fnding lengths and 
areas of segments and shapes drawn on a dot grid. We 
see some of the same homework questions (“Find the 
areas of triangles AST, BST, CST, and DST. How do 
the areas compare? Why do you think this is true?” 
[Lappan et al., 1997, p. 23]), as well as added new 
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signposts of work on Mathematical Practices: “As you 
worked on the Problems in this Investigation, you 
used prior knowledge to make sense of them. You also 
applied Mathematical Practices to solve the Prob-
lems….” (Lappan et al., 2014, p. 21). 

Te most striking change between the two versions 
is the opportunities for students to reason about the 
Pythagorean Teorem. Unlike CMP 1, the frst set of 
tasks in CMP 3 to explore the Pythagorean Teorem 
asks students to generate a table of side lengths, and 
areas of squares drawn from the sides, for right trian-
gles as well as acute and obtuse triangles. Tey are then 
asked to “Make a conjecture about the areas of the 
squares drawn on the sides of a triangle and the type 
of triangle” (Lappan et al., 2014, p. 40). Like CMP 1, 
students are invited to make a claim about the rela-
tionship between the areas of the squares drawn on the 
sides of the triangle and the lesson proceeds, as in CMP 
1, to name the Pythagorean Teorem and explain what 
a theorem is in the discipline of mathematics. Te text 
also shares that over 300 proofs exist for the Pythago-
rean Teorem. However, one major shift between the 
versions happens after students complete the frst three 
tasks under the heading “Puzzling through a Proof” 
(Lappan et al., 1997, p. 29): 
A. How do the side lengths of the squares compare to 

side lengths of the triangle? 
B. Fit the 11 pieces into the two frames. 
C. What conclusion can you draw about the relation-

ship among the areas of the three square puzzle 
pieces? 

Instead of part D as stated in CMP 1: “What does the 
conclusion you reached in part C mean in terms of the 
side lengths of the triangles? State this relationship as a 
general rule for any right triangle with legs of lengths a 
and b and a hypotenuse of length c,” the CMP 3 ver-
sion directly prompts students to reason about the truth 
of the statement for the general case: “Compare your 
results with those of another group. Did that group 
come to the same conclusion your group did? Is this 
conclusion true for all right triangles? Explain” (bold-
ing added for emphasis). Te CMP 3 version explicitly 
prompts students to explain why their conclusion is 

true for all right triangles. We see here, once again, 
the authors evoking the importance of generality in 
students’ arguments (“for all”). But, more importantly, 
we see a push beyond just stating a claim. 

One unique feature of SMP 3 (CCSS, 2010) is the call 
for students to be able to evaluate others’ arguments. 
CMP 3 includes more opportunities for students to 
evaluate hypothetical student arguments in the text-
book compared to CMP 1, and each of these cases 
serves as an opportunity to develop students’ under-
standing of the genre of mathematical argumentation. 
For example, as the lesson in CMP 3 transitions to a 
lesson on a technique for measuring using lengths that 
form a right triangle, students are invited to consider a 
sample piece of student reasoning: 

Raeka claims that if the lengths of the three sides of 
a triangle satisfy the relationship, a2+b2=c2, then the 
triangle is a right triangle. She reasons as follows: 
Take the two shorter side lengths a and b. Use these 
to form a right angle and then a right triangle. 
Call the length of the hypotenuse d. Since this is 
a right triangle, then a2+b2=d2. You also know that 
a2+b2=c2. Terefore, c2=d2  so c=d. Since three sides 
of one triangle are the same as the three sides of 
another triangle, then these two triangles are the 
same. Tis means that the original right trian-
gle is unique. Does Raeka’s reasoning prove the 
conjecture that if a2+b2=c2, then the triangle with 
side lengths a, b, and c is a right triangle? Explain. 
(Lappan et al., 2014, p. 48) 

Te genre of argument here has a key diference with 
the “puzzle proof” in that Raeka does not generate a 
concrete example but uses letters to generate algebraic 
equations that express relationships between variables 
(i.e., a quantity that can vary). Yet, it also uses a mode 
of argumentation that difers from the modes suggested 
at the beginning of the unit. While the use of alge-
braic equations difers from showing the relationship 
holds for a set of examples, the argument also does not 
use logical statements presented deductively based on 
known facts and assumptions. Instead, the genre of 
Raeka’s argument is known in the discipline of math-
ematics as a “proof by construction.” Raeka constructs 
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a right triangle that satisfes the Pythagorean Teorem, 
and then argues that the hypotenuse of the new triangle 
is equal to the hypotenuse of a triangle that satisfes the 
Pythagorean Teorem. Tus, if the side lengths are the 
all the same, it is, in fact, a unique triangle that satisfes 
the criteria of being a right triangle with side lengths 
such that squares drawn from those side lengths have 
a numerical relationship expressed by the Pythagorean 
Teorem, and not some other kind of triangle. Like 
rhetorical devices, diferent modes of mathematical 
argumentation may be employed based on the kind of 
claim being made. Modes like generic example proofs 
and proof by construction adhere to standards of 
mathematical argumentation—such as removing doubt 
about the truth of an assertion by building arguments 
based on true statements organized in a coherent and 
logical manner. Te inclusion of this argument evalua-
tion activity in the CMP 3 sequence enhances students’ 
opportunities to learn diferent modes of argumenta-
tion than the previous sequence in CMP 1. 

Summary 
In this section, we have presented analyses of two task 
sequences designed to engage students in a central 
mathematical practice: generalizing and creating argu-
ments to explain why generalizations are true. Proof is 
the central epistemic practice of mathematics, and these 
task sequences are most middle school students’ frst 
exposure to proof. Our analysis of these task sequences, 
specifcally highlighting changes between the frst and 
third published versions of them, reveals specifc ways 
the textbook is communicating to students both the 
social value of generalization and the social value of 
establishing truth in the discipline of mathematics. 

In both the frst and third versions of the sequence, we 
see directives for students in terms of fnding “every 
possible” case, to “make a conjecture,” and to “fnd a 
general rule.” Tese directives reveal that doing math-
ematics entails not just solving diferent problems 
and seeing if you can get the answers—doing math-
ematics is the practice of seeing patterns in cases you 
have explored. Invitations to generalize are presented 
as questions, although the audience listening to the 
response is not explicitly stated. More of the prompts 

invite students to consider, “How do the areas com-
pare?” and “How do the side lengths of the squares 
compare to the side lengths of the triangle?” rather than 
“State a rule describing the relationship between the 
side lengths of the squares and the side lengths of the 
triangle.” Although the diference in outcome is subtle, 
the diference for students is that they are invited to 
generalize through the process of noticing, considering, 
and wondering rather than completing a request from 
the textbook. And, when there are instances of gener-
alizations prompted by directives (as in part D of the 
“Puzzling through a Proof” task from CMP 1; Lappan 
et al., 1997, p. 29), the opportunities presented in the 
textbook fail to reach a level of establishing truth of the 
generalization. 

Between the two task sequences, there are evident 
diferences in how each sequence communicated to 
students the social value of establishing truth through 
the task prompts. While part D from the “Puzzling 
through a Proof” investigation falls short in the CMP 1 
version of asking students to explain why their com-
plete puzzle illustrates that the Pythagorean Teorem 
is true for all right triangles, the third version from 
CMP 3 invites students to explain why the conclusion 
they drew from their work on the puzzle is true for all 
triangles. Moreover, part D asks students to do this as a 
result of their discussions with another group, not just 
as a result of their personal explorations. Te modifca-
tions to the prompt suggest critical aspects relevant to 
the authenticity of students’ engagement in the disci-
plinary practice of proof. First, authoring mathematics 
does not happen in isolation but, rather, as a commu-
nity of practice. Second, it is not enough to provide a 
case that shows that a statement is true: Doing mathe-
matics entails explaining that the statement is true for 
all cases. 

Conclusion 
Our critical examination of these sequences raises 
questions about engaging students in epistemic practices 
like proof that an audience with expertise in develop-
ing students’ literacy might be particularly poised to 
address. First, we noted aspects related to audience in 
the prompts in the task sequence. If we wish students to 
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approach these task sequences from a frame of mind of 
authoring mathematical ideas, rather than more passive 
stances such as practicing skills or experiencing mathe-
matics, how might the way we word directives or pose 
questions in the text achieve this frame of mind? Should 
the prompts leave the audience undefned? Could direc-
tives to prepare an argument to share with the teacher 
and/or classmates prompt students to better perceive the 
epistemic role of argumentation in mathematics? 

Second, we are curious about the use of certain puzzles 
as a context for exploring mathematical proof with 
regard to the Pythagorean Teorem. Te completion 
of the puzzle is a form of argumentation known as a 
generic example (Balachef, 1988) in mathematics, 
but some would argue that it is not a proof without 
the companion explanation of how the puzzle refects 
behavior that could be generalized to all right triangles. 
Given that middle school students are just beginning 
formal study of algebra and Euclidean geometry, other 
forms of argumentation to show why the Pythago-
rean Teorem holds true for all cases is beyond their 
reach. And herein lies the tension of the work around 
incorporating more opportunities to learn about the 
important role of proof in mathematics in school math-
ematics, making the work of creating a proof accessible 
for students. Even when students have the apparatus 
to make formal arguments, as they learn in high school 
geometry, teachers often describe the process of teach-
ing students to prove as throwing them into the deep 
end of a pool (Cirillo, 2008). Te feld of mathematics 
education would beneft from learning how to orches-
trate communicating disciplinary standards and pro-
viding students with authentic experiences as authors 
of mathematics appropriate to their level of under-
standing. Doing this throughout the K–12 curriculum 
remains a formidable challenge. 

In this article, we discussed the nature of the key tool 
in mathematics for establishing knowledge—argu-
mentation—and the aspects of the genre of argumen-
tation that are important norms for the discipline. We 
looked at how these aspects emerge in task sequences 
for middle school students when learning about the 
Pythagorean Teorem, and raised questions about what 

students may derive about the mathematical practice of 
argumentation from these experiences. We hope that 
we have provided some clarity around what argumen-
tation is in mathematics and, more importantly, what 
mathematics teachers are trying to help students do 
with regards to engaging in argumentation that honors 
its role in the discipline. We invite you to have conver-
sations with mathematics teachers about best practices 
for positioning students to respond to these kinds of 
tasks in mathematics textbooks so that they experience 
argumentation as an epistemic practice and not as 
another exercise to complete. 
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