Focus Questions

Background

The student book is organized around three to five investigations, each of which contain three to five problems and a Mathematical Reflection that students explore during class.

In the Teacher Guide the Goals for each unit include two to four big concepts with an elaboration of the essential understandings for each.

In the Teacher Guide, a Focus Question is provided for each problem in an investigation. The Focus Question collapses the mathematical understandings and strategies embedded in the problem into one overarching question. The teacher can use the Focus Question to guide his/her instructional decisions throughout his/her planning, teaching, and reflections on student understanding.

Description

The Goals of the unit describe the mathematics content developed in the unit. The Focus Questions provide a story line for the mathematical development of an investigation. The set of Mathematical Reflections in the student book provide a story line for the mathematical development of the unit. The following contain all of the Goals, Focus Questions and Mathematical Reflections for each unit in CMP3.

Purpose

These stories can serve as an overview of the unit and as a guide for planning, teaching and assessing.

The Goals, Mathematical Reflections, and Focus Questions can be laminated and used a bookmark for the Teacher.

8-4: Frogs, Fleas and Painted Cubes

Unit Goals, Focus Questions, and Mathematical Reflections

Unit Goals

Quadratic Functions Explore problem situations in which two variables are in a quadratic relationship

Identify situations that can be modeled by quadratic functions Identify the pattern of change between two variables that represent a quadratic function in a situation, table, graph, or equation Determine values of the independent and dependent variables in a quadratic function from a table, graph, or equation Represent a quadratic function with a table, graph, and equation Make connections among the equation of a quadratic function, its graph, and the patterns of change in its table Use a quadratic equation to describe the characteristics of its graph and table Determine whether a quadratic function will have a maximum or a minimum point and predict the maximum or minimum point from its equation, graph, or table Predict the *x*- and *y*-intercepts from the equation, graph, or table of a quadratic function Interpret the information that the *x*- and *y*-intercepts and maximum or minimum point represent Use an equation, graph, and table to solve problems involving quadratic relationships Observe that one quadratic equation can model different contexts Compare linear, quadratic, and exponential functions

Equivalence Develop an understanding of equivalent quadratic expressions

Write and interpret a quadratic expression to represent the dependent variable in a quadratic function

Use an area model to develop an understanding of the Distributive Property

Use the Distributive Property to write equivalent quadratic expressions in expanded or factored form

Select and interpret the appropriate equivalent quadratic expression (in factored or expanded form) for predicting the *x*-

and *y*-intercepts, maximum or minimum point, and the line of symmetry for a graph of a quadratic function

Focus Questions and Mathematical Reflections

Investigation 1	Investigation 2	Investigation 3	Investigation 4
Introduction to Quadratic Functions	Quadratic Expressions	Quadratic Patterns of Change	Frogs Meet Fleas on a Cube: More Applications of Quadratic Functions
Problem 1.1 Staking a Claim: Maximizing Area Describe the shape of a graph that represents the areas of rectangles with a fixed perimeter.	Problem 2.1 Trading Land: Representing Areas of Rectangles If the length <i>n</i> of a square is increased by 2 units and its width <i>n</i> decreased by 2 units, what two equivalent expressions represent the area of the new figure?	Problem 3.1 Exploring Triangular Numbers How many dots (or squares) are in the n th triangular number?	Problem 4.1 Tracking a Ball: Interpreting a Table and an Equation How can you predict the maximum height of a ball from the graph of a quadratic function?
Problem 1.2 Reading Graphs and Tables How does the maximum area of rectangles with a fixed perimeter appear in a graph or a table?	Problem 2.2 Changing Dimensions: The Distributive Property How does the Distributive Property apply to quadratic expressions? Explain.	Problem 3.2 Counting Handshakes: Another Quadratic Function If each team has <i>n</i> members, how many handshakes will occur?	Problem 4.2 Measuring Jumps: Comparing Quadratic Functions How can you predict the y- intercept of a quadratic function from its graph, table, or equation?
Problem 1.3 Writing an Equation How can you write an equation for the areas of rectangles with a fixed perimeter?	Problem 2.3 Factoring Quadratic Expressions What is a method for factoring an expression as a product of two or more factors? How is this related to the Distributive Property?	Problem 3.3 Examining Patterns of Change Describe the pattern of change between the number of people on a team and the number of handshakes that occur.	Problem 4.3 Painted Cubes: Looking at Several Functions When a painted cube with edge length <i>n</i> is separated into <i>n</i> ³ small cubes, how many of these cubes will have paint on three faces? Two faces? One face? No faces?

2014 Connected Mathematics Project at Michigan State University © http://connectedmath.msu.edu

	Problem 2.4	Problem 3.4	Problem 4.4
	Quadratic Functions and	Quadratic Functions and	Putting It All Together:
	Their Graphs	Patterns of Change	Comparing Functions
	How can you use a quadratic	Compare the pattern of change	What can you learn about a
	equation to predict the x- and	for a quadratic function to the	function from a table, graph, or
	y-intercepts,	patterns of change for linear	equation that represents the
	maximum/minimum points,	and exponential functions.	function?
	and line of symmetry of its		
	graph?		
Mathematical Reflection	Mathematical Reflection	Mathematical Reflection	Mathematical Reflection
1. a. Describe the	1. Explain how you can use the	1. a. In what ways is the	1. Describe three real-world
characteristics of graphs and	Distributive Property to	triangular-number relationship	situations that can be modeled
tables of quadratic functions	answer each question. Use	similar to the relationships in	by quadratic functions. For
you have observed so far.	examples to help with your	the handshake problems? In	each situation, give examples of
b. How do the patterns in a	explanations.	what ways are these	questions that quadratic
graph of a quadratic function	a. Suppose a quadratic	relationships different?	representations help to answer.
appear in the table of values for	expression is in factored form.	b. In what ways are the	2. How can you recognize a
the function? 2. Describe two ways to find	How can you find an equivalent	quadratic functions in this	quadratic function from a. a table?
the maximum area for	expression in expanded form? b. Suppose a quadratic	Investigation similar to the quadratic functions in	b. a graph?
rectangles with a fixed	expression is in expanded form.	Investigations 1 and 2? In what	c. an equation?
perimeter.	How can you find an equivalent	ways are they different?	3. What clues in a problem
3. How are tables, graphs, and	expression in factored form?	2. a. In a table of values for a	situation indicate that a linear.
equations for quadratic	2. Describe what you know	quadratic function, how can	exponential, or quadratic
functions different from those	about the shape of the graph of	you use the pattern of change	function is an appropriate
for linear and exponential	a quadratic function. Include	to predict the next value?	model for the data in the
functions?	important features of the graph	b. How can you use a table of	problem?
	and describe how you can	values to decide if a function is	F
	predict these features from the	quadratic?	
	equation of the function.	3. Compare the patterns of	
		change for linear, exponential,	
		and quadratic functions.	