Student Work

Comparing and Scaling Problem 2.1 Sharing Pizza: Comparison Strategies

The dining room at a camp has two sizes of table. A large table seats ten people, and a small table seats eight people. When the campers come for dinner one night, there are four pizzas on each large table and three pizzas on each small table.

(A) The campers at each table share the pizzas equally. Does a person sitting at a small table get the same amount of pizza as a person sitting at a large table? Explain your reasoning.

T MICHIGAN STATE UNIVERSITY
Sur Strategy:

$$
\begin{aligned}
& 10 / 4=1 / x \\
& \begin{array}{l}
4 \div 10=.4 \quad x=0.4 \\
8 / 3=1 / y \\
3: 88.375 \quad y=.375 \\
\text { Small Table:0.025 less izzaz per lesson }
\end{array} \\
& \text { (compered to big lathe) } 5 \\
& \text { Big Table: } 0.025 \text { more pizza per person }
\end{aligned}
$$

Percents

Explanation
We believe that the large table is the place to sit if you want
more pizza. At the large table, you will get 40% of a pizz d more pizza. At the large table, you will get 40% of a pizza.

T MICHIGAN STATE UNIVERSITY
College of Natural Science

Step 1: Find a common numerator

$$
4_{1 / 10^{40}}^{4^{3}}=(12 / 30) \quad 3 / 8^{6+1}=(12 / 32
$$

Step 2: See which fraction is greator(fraction with smaller denom nator)

$$
12 / 30>12 / 32
$$

The large table is better, because the amount of pizza(numerator) is the same for a smaller amount of pen. people (denomenator), so there will be more pizza per person.

People per Pizza
1 Find the number of people end pizzas at enoch tob le. Large'. 10 people, 4 pizzas, \quad inalli:grapte, 3 pizzas.
2. Then yourivits tie number of proper by ike number or pizzas. Large: $10=4=2.5 \quad$ small. $83=2.6$
3 The one with the dosed answer has feral people eating mar pizza, on s irineroce more pizza dor each person.

$$
2.5<2.6
$$

more pizza for reachpothon at the bilge fosse.
(MICHIGAN STATE UNIVERSITY
We assumed each pizza had 8 slices.

$$
\begin{aligned}
& 8 \times 4=32 \text { slices at large table } \\
& 8+3=\text { ar slices at small table } \\
& 32 \div 10= 3.2 \text { slices per person } \\
& \text { at large table } \\
& 24 \div 8= 3 \text { slices per person at } \\
& \text { small table f } \\
& 3,2>3
\end{aligned}
$$

If you went more pizza You should sit at the large table!

$$
\text { Large Table: } \frac{4}{10}=\frac{16}{40}
$$

Small Table: $\frac{3}{8}=\frac{15}{40}$

$$
\frac{\text { La gee }}{\frac{16}{40}}>\frac{\text { Small }}{\frac{15}{15}}
$$

