This document is the property of the Connected Mathematics Project, Michigan State University.

This publication is intended for use with professional development. It
is protected by copyright, and permission should be obtained from the Connected Mathematics Project prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording or likewise.

Jacqueline Stewart and Elizabeth Phillips, Connected Mathematics Project, Michigan State University

Copyright © 2007 by Connected Mathematics Project, Michigan State University

"Making Sense of Symbols, Writing Equivalent Expressions:
 Say It with Symbols Problem 1.1

LAUNCH:
Before viewing the video of students doing Say It With Symbols, 1.1.

Getting Before viewing the video participants need to do Say It With Symbols,

Ready to
View the Video: Do
1.1
participants
have done
1.1

Questions
for Teachers

Note: the
first two questions are always part of planning to teach.
After
participants
have done
1.1
Questions
for Teachers 1.1 , just as if they were planning to teach the lesson. I think I will launch 1.1 by having a "teacher" discussion about what equivalence means, what role it plays in the study of algebra, and what mathematical experiences one would expect CMP students to draw on for 1.1. Then we will do Inv 1.1 in its entirety, Launch- Explore and Summarize.

After the "student" summary of Problem1.1 I can select a few "teacher" questions from the list below, to help participants prepare their mindsets to watch the video of students doing the same problem.
Possible "Teacher"
Discussion
Questions:
In Previous
Workshops Teachers Have Said:

- What expressions do you predict your students will generate?
- What if they don't generate many expressions?
- $n=4 s+4$,
$n=4(s+1)$,
$n=2 s+2(s+2)$
- What difficulties might you predict for your students in 1.1?

Follow Up Questions

- Should we offer expressions from "another class?"
- Are the expected expressions connected?
- Is the number of border tiles related to perimeter? Area?
- How can we help students get started to thinking about a general rule? ${ }^{\Omega}$
- Maybe the picture of a square pool will make them think of area, not perimeter.
- Some may not be
able to write any general rule in symbols.

[^0]| | Possible "Teacher" Discussion Questions (cont'd): | In Previous Workshops Teachers Have Said: | Follow Up Questions |
| :---: | :---: | :---: | :---: |
| Note:
 Try to keep the focus on the mathematics. | - What do you think students will understand about equivalence prior to 1.1? Where did they get these understandings? | - They have used this word in relation to fractions, ratios, and expressions. They may also have used it in Moving Straight Ahead or Growing, Growing, in relation to alternative equations. | - In FF students have used the distributive property to multiply two binomials, producing an equivalent expression. Is this relevant to this problem? ${ }^{\Omega}$ |
| | - What mathematical ideas would you want to come out of Problem 1.1? | - Students connect the context to a symbolic expression
 - Students use tables and graphs to check equivalence
 - Students begin to connect symbolic expressions
 - Hope they see that the number of tiles grows linearly. | - What should students already know about properties of real numbers that will allow them to manipulate symbols?
 - Should we push these manipulation skills if they don't come up? Ω |

[^1]Questions for Curriculum leaders (and teachers)

Possible "Teacher" Discussion Questions (cont'd):

- What will your role be in the Summary?

In Previous
Workshops Teachers
Have Said:

- Choose different strategies and push students to validate their expressions by reasoning about the geometric context
- Probe ways to check equivalence
- Ask about linearity

Follow Up

 Questions- Would you have selected different "student" work from what I did? - Would you have sequenced or connected this differently?
- Do similar graphs prove relationships are equivalent?
- How does this problem, by itself, help students make sense of symbols?
- How does this problem advance the idea of equivalence?
- They have to write an - In a single expression and be expression able to make sense $\quad \mathrm{n}=4 \cdot(\mathrm{x}+1)$ of others' expressions.
- They have to use order and parentheses carefully.
- They have to connect their expression to the context or to their computation.
- In FF students used - What do $8^{\text {th }}$ tables and graphs and distributive property, but all related to quadratic forms only. The solutions are all linear here.
- This time there are many equivalent forms.
- We get different information from each form; one form is not considered best.
there are 9
symbols. Can we change the order of the symbols, say
$\mathrm{n}=(\mathrm{x} \cdot 4)+1$?
Does the context help students make sense of order?
grade teachers
need to know
about
equivalence?
How can they
increase their
knowledge?

Possible "Teacher"
Discussion Questions (cont'd):

- Is equivalence a big idea on your State Standards?

In Previous
Workshops Teachers
Have Said:

Follow Up Questions

- Name some State Standards statements, or some examples of test items, that imply an understanding of equivalence.

VIDEO: "Making Sense of Symbols: Writing Equivalent Expressions (Say It With Symbols, 1.1)"

27 minutes, 17 chapters
Note: This video has been edited to focus on students making sense of symbols, and the teacher's role in setting up an environment where making sense is the norm. Real time was 1.5 class periods.

EXPLORE: While Watching the Video

Focus Questions

Note:
Most of these questions focus on mathematics. An alternative to this is to focus only on Discourse, using a rubric such as the one developed by K.Huffer-Ackles et.al. (2004). See Appendix.

Focusing on Discourse can have the effect of relegating the mathematics to a subordinate position. See "Student Discourse: Say It With Symbols 1.3."

Form Focus
Groups of Teachers

The following focus questions help both teachers and curriculum leaders think about where students are in their development of symbol sense. Each person (or group) should select one or two questions to focus on while watching the video.

- What evidence do we see of students making sense of symbolic expressions? How do they make sense of symbols?
- What evidence is there that students understand equivalence? What do they still have to understand about equivalence?
- What do students understand about linear expressions? Quadratic expressions? Is this knowledge helpful in making sense of symbols?
- What evidence is there that some students are concentrating on links among symbolic expressions rather than linking each expression to some other representation?
- What moments seem to be mathematically significant in terms of the idea of equivalence?
- What evidence is there that students expect to make sense? What role does the teacher play in this expectation?
- What evidence is there that the teacher purposefully chose and sequenced particular student expressions? Would you have done this differently?
- Did the teacher have to deal with unexpected student questions or comments? What came out of these impromptu situations? How would you have dealt with these?

It has worked well in the past to re-arrange participants into focus groups before viewing the video. If they have a few minutes to talk about the focus question before the video and then time to debrief in small groups after the video I have noticed that the discussions are more coherent. I have tried to think of follow up questions that will help participants extend their thinking. I should keep notes from each professional development workshop so I can refine these questions.

SUMMARIZE:	Focus Questions	In Previous	Follow Up
Focus group	(as above)	Workshops	Questions
Discussion after		Teachers have said	

Note:
Alternative ways to conduct discussions: It can be unnecessarily repetitive if the same discuss/ view/discuss format is followed in every pd session. I have tried different formats. Some of these are described in the appendix.

Focus Questions (as above)	In Previous Workshops Teachers have said	Follow Up Questions
- What evidence do we see of students making sense of symbolic expressions? How do they make sense of symbols?	- They are attaching each expression to the geometric context. If it makes sense in the context then it's correct - They make a table and graph-if the table or graph matches another that makes sense then it's correct.	- How does student understanding of symbolic expressions connect to or extend what we saw them doing in MSA or in Growing, Growing or FF? - What are some obstacles to making sense of symbols in this problem? ${ }^{\Omega}$
- What evidence is there that students understand equivalence? What do they still have to understand about equivalence?	- The evidence shows they understand that equivalent means "another way of describing" a relationship They also understand that equivalence means "has same table or graph." It's not clear that they all realize that the symbols can be manipulated independent of the context.	- Can you think of instances where deliberately writing some algebraic expression in a different but equivalent way would be of practical help in solving a problem? - What are some drawbacks of the table/graph way of checking equivalence? ${ }^{\Omega}$

[^2]| Focus Questions cont'd (as above) | In Previous Workshops Teachers have said | Follow Up Questions |
| :---: | :---: | :---: |
| - What do students understand about linear expressions? Quadratic expressions? Is this knowledge helpful in making sense of symbols? | - They recognize linear graphs.
 - The table of a linear relation should show a constant rate of increase.
 - They know the simplest form of a linear equation looks like $y=m x+b$
 - They know that a quadratic has a term with $x \cdot x$. so Ellie's equation was wrong. | - It looks like they are beginning to pay attention to the overall form of an equation. (linear, quadratic) Why would this be helpful? ${ }^{\Omega}$
 - How does this problem resemble the problems in Frogs and Fleas and how is it different? |
| - What evidence is there that some students are concentrating on links among symbolic expressions? | - One student said that " $(2 x) 2$ " was the same as " $4 x$." John came up with "an infinite amount" of expressions. He explicitly said he didn't have to draw a model. | - No student came up with $n=(s+2)^{2}-s^{2}$. How does this expression relate to finding the number of border tiles? Would students be able to show it is equivalent to $\mathrm{n}=4 \mathrm{x}+\mathrm{b} ?^{\Omega}$ |

[^3]| Focus Questions cont'd (as above)
 - What moments seem to be mathematically significant in terms of the idea of equivalence? | In Previous Workshops Teachers have said
 - John's manipulation of one form to get another-can't draw picture but doesn't think he has to
 - Ellie asking if the order of operations matters
 - Josh saying that the second equation is just " $4 x+4$ "
 - A student saying that (2x)2 +4 is just "splitting the $4 x$ " | Follow Up
 Questions
 - What mathematical ideas do students have to understand in order to be able to check equivalence symbolically? |
| :---: | :---: | :---: |
| - What evidence is there that students expect to make sense? What role does the teacher play in this expectation? | - It looks like the class norm is to explain. Audrey volunteered to do this.
 - Heather disagreed with an expression, without the teacher indicating it was wrong.
 - Josh and Audrey gave additional reasons for " $x 4 x+4$ " being wrong.
 - The teacher asks why solutions make sense, and she waits for students to offer corrections. | - How does one set up this kind of classroom participation structure? Did Kathy do anything in setting up the summary procedure that supported this? (See HufferdAckles, 2004, in the References., to find vocabulary to talk about setting up a "math-talk community.") |

Focus Questions	In Previous	Follow Up
cont'd (as above)	Workshops Teachers have said	Questions

- Did the teacher have to deal with unexpected student questions or comments? What came out of these
impromptu
situations? How
would you have dealt with these?
Can you plan for these?
- How did Kathy
deal with the
erroneous
$n=x \cdot 4 x+4$? Do
you think she
expected this?
What came out of
this situation? ${ }^{\Omega}$
- How did Kathy deal with John's
comment about
"an infinite
amount?" How might comments like this affect the teacher's plans? ${ }^{\Omega}$

[^4]
[^0]: ${ }^{\Omega}$ Some students find it difficult to write symbolic expressions. Verbalizing the steps in each student computation as the result is entered in a table helps to generalize any process more sophisticated than just counting. For example, they may count a side plus a corner plus a side plus a corner, and then double all that. This generalizes as ($s+1+s+1$)•2. The teacher can record the student -verbalized computation in words and symbols as a preparatory step en route to having students do this independently. Trying to make contextual sense of expressions written by others re-inforces this. Some students may also be helped by counting the perimeters of specific examples and recording these in a table. For example, if a student draws a $3 \times 3,4 \times 4$ and 5×5 pool and counts the number of perimeter tiles, then they have no access to a strategy that generalizes; but they will still produce a table of results that suggests a linear equation with a " 4 x " term.

[^1]: ${ }^{\Omega}$ It's interesting to me that the teacher on the video used the example of multiplying 2 binomials to remind students of their knowledge about equivalent expressions, yet, as we shall see on the video, almost no students tried to use the area of the pool to work out the number of border tiles. One student, Heather, specifically mentions that multiplying $\mathrm{x} \cdot \mathrm{x}$ will give the area of the pool, but she does this as a way of explaining that that is not what she wants or needs. Another student, Ellie, has real trouble coming up with even one expression. For example, she suggests " $4 x^{2}$ " in an effort to reconcile the 4 sides she sees and the square she sees. She finally settles on $x \bullet 4+4$, but when she writes her expression on the board she writes $\mathrm{x} \cdot 4 \mathrm{x}+4$. Is this a slip or is Ellie still thinking she has to multiply the two sides somehow? It's not possible to tell without asking Ellie.
 ${ }^{\Omega}$ Problems 1.3 and 1.4 will focus more on symbolic manipulation, specifically the Distributive Property. Listening to students carefully, the teacher will have to follow their lead at this stage, knowing there are other opportunities coming up.

[^2]: ${ }^{\Omega}$ The drawing of the pool may suggest an area computation, which may lead students to expect a quadratic expression. See footnotes on pages 3 and 8 .
 ${ }^{\Omega}$ Two graphs may look identical, but not actually represent the same underlying relationship. See "Making Sense of Symbols: Exponential Decay (Growing, Growing 4.1)"

[^3]: ${ }^{\Omega}$ See discussion of $n=x \cdot 4 x+4$ on page 3
 ${ }^{\Omega}$ One equivalent equation that is clearly not in simplest form is: $Y=(x+2)^{2}-x^{2}$. This looks quadratic. Sometimes students propose this equation, because they focus on the area of the border. If no student proposes this should the teacher raise this idea? In this case, there is the possibility of an interesting discussion about whether this proposed expression is indeed quadratic. Students can apply their knowledge about the Distributive Property, gained from Frogs and Fleas, to write this in expanded form. In addition, asking how this expression relates to the context might stimulate a conversation about whether the original question is about the area of the border tiles, or the number of the border tiles, and whether this distinction matters. In fact, the number of border tiles in this case is a number of square feet, and thus, implicitly an area.

[^4]: ${ }^{\Omega}$ I don't think that Kathy expected this error, $n=x \cdot 4 x+4$. In fact I think she selected Ellie to validate the effort Ellie had put into finding an expression that was correct, at least at the moment that Kathy saw her write it in her notebook. Or perhaps Kathy saw $n=4 x+4$ in several notebooks and wanted to give positive feedback to several groups right away. However, Kathy let the error stand until students corrected it. This took a long time to happen, but Kathy did not interrupt, though we can see on the original tape that she has noted that some students disagree with the expression almost immediately. One of the unintended consequences of allowing the error to stand is that when students explain why it is an error we get some insight into what they understand. They know that $\mathrm{n}=\mathrm{x} \cdot 4 \mathrm{x}+4$ is wrong because it produces mismatches with the number of perimeter tiles in their drawings. But they also know that it is wrong because it is a quadratic expression, and they are sure that the relationship between number of tiles and side length is linear, based on the constant rate of increase shown in their drawings and tables. Without the error the discussion of forms and rates of increase would not have happened. This is one of those moments which a teacher can not plan for, but can prepare for, by doing the problem and thinking about all the mathematics in the problem and what students will bring to the problem: the linearity of the relationship, the likely responses.
 ${ }^{\Omega}$ John's comment and the comments of others about symbol manipulation seems to lead Kathy to ask students if they can show the different forms are equivalent to each other or to $\mathrm{n}=4 \mathrm{x}+4$. The Summary of 1.1 included discussion which might otherwise not have come up until Problem 1.2. The teacher chose not to do 1.2, perhaps because of the rich discussion prompted by John's and other students' comments.

