```
    This transcript is the property of the
    Connected Mathematics Project,
        Michigan State University.
This publication is intended for use with professional development. It
    is protected by copyright, and permission should be obtained from the
        Connected Mathematics Project prior to any prohibited reproduction,
    storage in a retrieval system, or transmission in any form or by any
    means, electronic, mechanical, photocopying, recording or likewise.
                Jacqueline Stewart and Elizabeth Phillips,
                    Connected Mathematics Project.
        Copyright © 2007 by Connected Mathematics Project, Michigan State
    University
```

```
    Transcript for March 8 - 9, 2007
    "Writing Equivalent Expressions:
Say it with Symbols, Making Sense of Symbols, 1.1"
    The class is seen working on Investigation 1.1,
                        "Equivalent Expressions"
The video was shot in real time and edited from 1.5 days,
        Approximately 1.5 hours, to 27 minutes.
            Say It With Symbols, Investigation 1
                Class: 8th Grade
            Date: March 8 - 9, 2007
```

```
Chapter 1: Intro to Problem 1.1
Approximate time 00 - 2:17 (Times from start of video)
Slide:
Title slide
Slide:
Launch
Real Time: 4 minutes
Line 1, 00:19 T: In the first problem we're gonna focus on
    equivalent expressions and in Frogs, Fleas and Painted
    Cubes we spent a lot of time on equivalent expressions
    or equations. actually most of us were calling em
    then.umm for example If this was the expression that I
    have could you write one that was equivalent to that?
    Class: Yes
    T: Ellie
Line 10, 00:49 Ellie: umm Do you want it in like expanded form?
T: Sure
    Ellie: umm X squared + 2x + 3x + 6
    T: Are those equivalent?
    Class: Yes
    T: Yea those would be two equivalent expressions. So
    in problem 1.1 that's the idea I want you to have in
    your head. That there might be more than 1 way to
    write about a situation. and they can be equivalent
    and they are gonna tell us something different. If
Line 20, 1:16
Line 30, 1:36
    T: Of each individual piece inside it yup. So they
    tell me slightly different things even though they are
    equivalent in telling me the area of the whole thing.
    So when you're looking at the problem today I want you
    to kind of keep that as a kind of background in your
    mind. That there's more than 1 way to write about a
    situation and it'll just tell me something slightly
    different. Today's problem it involved the Custom Pool
    Company What I want you to think about is at the
    Custom Pool Co. If somebody calls and they say the
    size of my hot tub or the size of my pool is
```

Line 40, 2:12 blah blah blah blah square how can the Custom Pool co. quickly calculate how many border tiles that person would need?

Slide:
Showing Problem 1.1

```
Chapter 2: Logan's Group Has a Disagreement About Part B.
Approximate time 2:18 - 3:44 (Times from start of video)
Slide:
Explore
Real Time: 18 minutes
Line 1, 2:29 Logan: We're thinking its x times 4 plus 4.
    T: How come?
    Logan: Because you're gonna times whatever number they
    say for that by 4 and then you have to add 4 for the
    corners.
    T: Does that work?
    David: Yea
    T: Then in the second one it says, "Can you write a
        different equivalent expression? Is there another way
        you could think about these border tiles?
        John: umm You could uhh Say like S times 2 times 2
        like if you had s times 2 in parentheses and then
        times two and then plus 4.
        Logan: Ohh I see what you're saying so like
        parentheses x times 2 Yea its the same. Wait no its
        not.
    David: Yea it is.
    Logan: No its not. The first two are the same. The
    rest of them aren't
    David: Wasn't that 16, it was 40 and 16.
Line 20, 3:38 Logan: That's so... That one doesn't work
David: Maybe without the parentheses.
T: I'll let you guys work on that one
```

```
Chapter 3: Audrey's Group Has a Different Solution
Approximate times 3:38-4:29 (Times from start of video)
Line 1, 3:45 Audrey: Because s is the length of the square umm and
    so it'd be times 4 to get all these and then plus 4
    because the corners cause you won't the corners if you
    just do s times 4.
    T: ohh ok then you're adding the four corners
    Audrey: Right, so then you could just shorten it and
    go s plus 1 in parentheses and then times 4
    [(s+1)4]
    because then you could go that's s plu-- that's s plus
    1 right there then there s plus 1 right there
Line 10, 4:16 then there's s plus 1 right there and there's s plus
    1 right there.
    T: ohhh your s plus 1 is a side with a corner.
Audrey: so you get em all ... yea
T: I see and then you have 4 of them.
S: Yea
T: I'm getting it.
T: Interesting.
```


Chapter 4: One Student Helps another to Correct a Solution Approximate time 4:29-5:59 (Times from start of video)

Line 1, 4:30 Megan: Then you'd have to double that to get all the sides and then add the four corners.

T: Is that what you guys have?
Megan: Yup
T : So let me see if I got you right. You're saying s times so you're saying 3 times 3 and then times 2 plus 4. so there would be 22 on that one?

Megan: No
T: Why were you doing 3 times 3 can you say that
Line 10, 4:59

Line 20, 5:17 Megan: mhmm
T: Do you have any ideas Chelsea?
Chelsea: I think it would be like 3 plus 3 and then times that by two because you're doing the 3 on the side. [(3 + 3) 2 + 4]

Megan: So it would be s plus s times 2 plus 4.
Chelsea: Yea... Yea.
T : Oh so you're adding those two.
Chelsea: Uh- Huh
T : And then why are you multiplying it by two?
Line 30, 5:40 Chelsea: Because then you have the two other sides.
T: So that would get all four of your sides.
Chelsea: Yea.
T: And then why the plus 4 ?

```
Chelsea: Cause you have the four corners.
T: Ohhh...
Megan: That would work.
T: Does it work on this one too?
Megan: mhm...
T: So you got one?
```

```
Chapter 5: A Student Is Struggling to Find a Solution
Approximate time 5:59 - 7:50 (Times from start of video)
Line 1, 6:00 T: Does this one work?
    Elle: I'm thinking probably not.
    T: Let's try it. If it's two, you're saying two
    squared plus four times two plus one times two, and
    what's N. Is that the S also?
    Elle: Like, I want to know S, it's like, it's the
    number of border tiles - T: Oh, so it's going to
    equal N.
    Elle: Yeah.
    [Table showing what Ellie is trying: N = s
Line 10, 6:25 T: I gotcha now. So does that one work? So two
    squared is four - nineteen. So did that work?
    Elle: No.
    T: No.
    So they're not working.
    T: So I would agree that there are four sides, but I
    don't think it's included all of the border tiles.
    Elle: Unh uh, 'cause then there's still four left.
    T: So how could I take what you were saying, the side
    plus four, and include those corners?
Line 20, 6:57 Elle: Ummmm, maybe to, oh, no -
    T: Since we know these didn't work, but you started
    with the fact that you had four sides. Now what do we
    need?
    Elle: Uh, the, the corners.
    T: So how can I write that into the equation?
    Elle: Um, maybe you can like, um, put it as a second
    power.
    T: Try that. John, do you have any ideas?
    Jon: No. I don't. I'm lost.
Line 30, 7:28 T: Well, Elle is saying there are four sides of
    border tile -
    Elle: So it'd be four S -
    T: And there are four corners -
    Elle: Four S -
    T: So how could that be?
    Elle: Four S to the second power.
    T: Would that work?
    Elle: Maybe.
```

```
Line 40, 7:44 the side squared would be four times four is
    sixteen,but we needed twelve.
```


Chapter 6: A Group Has Two Equivalent Expressions Approximate time 7:51-8:50 (Times from start of video)

Line 1, 7:51 T: I haven't talked to you guys. What have you guys found? Tell me about the equations you've found.

Paul: We didn't - we wrote P equals and then like, uh, parenthesis L plus one parenthesis plus four.
[Student notebook showing 2 equations $N=(L+1) 4$ and $N=(L \bullet 4(+4]$
T: What's the L plus one?
Paul: The length of the...
Kayla: The length by adding one, 'cause you gotta have the length of the original pool plus one and you times that by four.

Line 10, 8:13 T: So the length -
Kayla: The length of the pool -
T: Of the pool - oh, and then a corner -
Kayla and Paul: Yup.
Kayla: And then times it by four.
T: And there'd be four groups of that. Okay.
Kayla: And the second one is - you've got the original length of the pool, and then you add four.

T: Say that again.
Kayla: You've got the original length of the pool -
Line 20, 8:32 T: Oh, you've got four of those -
Kayla: And you times it, times it by four,
Kayla: and then you add four pieces.
T: And then the four pieces on the corners.
T:Ooooh. And you've proven that they are equivalent?
Kayla: Um hmmm.
T: How did you prove they were equivalent?
Paul: Used the calculator -
Kayla: Um, put'em into the calculator and when we
Line 30, 8:46
pulled up the table then they're the exact same numbers.

T: Same numbers. Very cool.
Paul: Yup.

Chapter 7: Megan's Group Has Two equivalent Expressions Approximate Times 8:51 - 10:08 (Times from start of video)

Line 1, 8:52 T: Megan, what'd you guys come up with?
Megan: Um, we came up with S, er, S times four plus four would be the same thing, because $[s \bullet 4+4]$
T: How do you know that works?
Megan: If you do - for the S plus S times two -
S(unidentified): Wait. What was it? S -
Megan: S plus X plus two, er, times two plus one,'cause if you do three plus three, that's six. And then if you do six times two it'd be twelve, and

Line 10, 9:25

Line 20, 9:38 Megan: Yeah.
T: Oooh.
Megan: And here you're just taking that - you don't have to do the actual stuff by doing that. It's just three four times, that's twelve, and then you add the four corners, which is sixteen.

T: So if you were putting it on here, how were you going to prove to me that they were equivalent?

S(unidentified): By the table.
T: And how could the tables tell you?
Line 30, 9:58 S (unidentified): The exact same thing.
T: And have you checked that or you're just starting to?

S(unidentified: No.
Megan: Yeah. It's right here.
T: Oh, you have it. And you have it too, Daryl?
Megan: It's the exact same.

```
Chapter 8: Summary Starts, Ellie Proposes a Solution
Approximate times 10:09 - 13:14 (Times from start of video)
Slide:
Summary
Real time: 20 minutes
Line 1, 10:19 T: And why does that work?
    Elle: Um, because you take, like, whatever your side
    length is, and then you times it by four, because
    that's how many sides there are, because that's a
    square, you know, and then you just, you have like the
    four corners left because they're included in the
    sides and so you gotta add the four.
    T: What do other people think about that? Audrey?
    Audrey: I can explain that.
Line 10, 10:43 T: Okay.
Audrey: Okay. Um, the X times four represents, uh,
getting the number of tiles around just the side, and
then the plus four gets the corners because when you
do S, X times four you only get these, and then you'll
have four left so you have to count those four
corners. Then you do X times four to get these but
then you have the four corners left because it doesn't
come with the X times four, so then you gotta plus a
four onto it to get these, then you've
got them all.
S (unidentified): Plus a four onto whatever the
length times four is.
Audrey: Yeah.
```


T: Heather?

```
Heather: Um, I get what you're saying, but I don't understand how she got her equation.
S (unidentified): Oh, yes.
Heather: Um, it should be just \(X\) times four plus four because if you do the four \(X\) that's changing it.
Four doesn't match up?
S(unidentified): Oh, that's what you mean.
T: So -
Audrey: Yeah. It'd just be four. Yea it...
Audrey: There shouldn't be an X there, 'cause otherwise that'd mean -
Josh: Everytime you're times you timesing S (unidentified): Yeah.
Josh: It's quadratic.
T: Josh, if we had another X there it'd be quadratic and you don't think this is quadratic.
Josh: No, it's not.
```

Audrey: No, it's linear, because everytime it goes up you're just adding four, because if this was a three by three, then you'd just add another, you'd add, you'd be adding four.

T: Why are you adding four every time?
Audrey: Because there's four corners.
Heather: There's four sides and each one gets another one.

Line 50, 12:26 Audrey: Yeah. There's four sides and you always add one. So if there was four before, on each side, and you add one, then there'd be five on each side, and so it would just be four more.

S: It'd be going up by four. Audrey: Yeah.

T: So when Josh said it wasn't quadratic, you said, you were saying that because you knew, you thought it was linear.

Josh: No. I'm saying 'cause before she had the four uh, X times four X -

T: And you didn't think it should be quadratic?
Josh. No, I didn't.
Paul: Good thinking.
Josh: Thank you.
Audrey: It wouldn't, it wouldn't make sense for it to be quadratic -

T: Because?
Audrey: Because it's not gonna go up to say, tenths, ten, uh, squares on each side and then just go down
Line 70, 13:07 to nine and then eight -

T: So it's not going to go up to something and come down, you're saying -
Audrey: Yeah.
T: So quadratic doesn't make sense.

```
Chapter 9: Heather Proposes a Different Solution
Approximate times 13:15 - 14:49 (Times from start of video)
```

Line 1, 13:16 T: Does somebody have another expression that's equivalent to that and can prove it to us? Heather.

Heather: Um, thank you. You would do that because if you had your square, then you had your border around it - it's really bad - yeah, I know, it's cool.

T: I'm so glad I left the one on the overhead and no one likes to use it.

Heather: These, these are your X's here, your sides.
Line 10, 13:52 And you can't just do X times X 'cause then you'll get the area of your pool. And so you have to do X times two 'cause you have to do the opposite side which is the same length, and then you do the other X times two, and then you have to add them together so you can get the whole outside of the lengths, and then you have to add four because there's four corners.

Logan: What we did differently was we said it was, it's two X times two plus four.
$[2 x \cdot 2+4]$
Line 20, 14:18

Line 30, 14:37
S(unidentified): That'll, that works, 'cause it's like the same exact thing as that one.

S1(unidentified): You just added those two together Logan: How does that work?

S (unidentified): You're just splitting the times four in half.

T: Where?
Alyssa: For that one over there.
T: You're splitting the times four in half? Where?
Heather: No. What we - what they did there is they took the four sides at once and multiplied them. We just took the two sets of sides

Class: Ooooh. [Unintelligible]
T: Ooooh.
Audrey: Would that, wouldn't, would that work when it's a rectangle? That'd work when it was a rectangle?

T: But you don't think it'll work as a square?
S: No. It works as a square too.
T: Oh.

```
Chapter 10: Ellie Proposes Another Solution
Approximate Times 14:49 - 16:34 (Times from start of video)
Line 1, 14:57 [Ellie goes to the board]
    T: Two X times two plus two. What were you thinking
    when you wrote that? Can you help us to understand
    it?
    Elle: Yeah... plus two... probably not right.
    T: Well -
    Ellie: No I don't mean plus 4
    T: Help us out. Tell us what you were thinking and
    we'll decide if we agree with you.
    Class: I don't agree. No, I don't agree.
Line 10, 15:18 T: Well, Elle, tell us what you were thinking and
        maybe we can fix it.
    Elle: Well, I was thinking, um, uh, um, if you took
    just like two of the sides, and then you like - I
    don't know.
    T: You know what I'm confused about? I'm looking up
    here, and I see a bunch of you guys using your
    calculators. How are you using your calculator to
    decide if you agree or disagree with Elle?
    S: We're using the Y= and then, um, started graphing
    it and looked at the table.
    T: So if you graph it or table it, how does that help
    you to know if Elle's is correct?
    Class comments: [Unintelligible]
    T: So, because we're convinced Elle's first one
    works, and we're convinced now that Heather's works,
    you're checking against those in your calculator?
    Class: Yes, yeah.
    T: That's what your saying? Okay, now I understand.
    [Logan goes to the board]
    T: Now explain to me why you think that works.
    Logan: 'Cause then you're adding - you still - you
    still add in these four and then you add it.
    T: So the plus four is the corners, but I don't
    understand what the two X times two is.
    Logan: The two X is showing like that and that, the
    two, the two sides, and then you're just multiplying,
    getting that by two so you get that one and that one -
T: Two sets of that.
Logan: And then you just add the four.
```

```
Chapter 11: Megan Proposes Another Solution
Approximate Times 16:34 - 17:42 (Times from start of video)
Line 1, 16:44 T: Tell us why this one works.
    Megan: 'Cause if you have the S plus S you're taking
    the three here and you're adding three here, and
    you're timesing it by two and then you're adding the
    four corners.
    Class: Yup. Yeah. Good job.
    Alyssa: I said it's the same thing as mine.
    T: How is it the same thing as yours?
    Alyssa: Because we, we put, um, length times width
Line 10, 17:32
on, and then divided by two plus four.
T: Well, instead of saying side plus side you called
them length plus width.
Alyssa: Yeah.
    T: Are those all of them?
```

```
Chapter 12: Kaylie Proposes Another Solution
Approximate Times 17:41 - 18:40 (Times from start of video)
Line 1, 17:41 Kayla: Um, you've got, um, do this one - um, you've got the side length is X , [computer graphic]
and then, um, you want to add one, so that gets you the corner, [and then you times that by the four to get all four corners.
[computer graphic]
T: Hailey's question.
Hailey: Well, when, okay, wouldn't it - if you did that side length if you did this length here and then you added the corner, wouldn't you run out of corners to add?
Class comments: No. [Unintelligible] You've got corners on four sides.
S: 'Cause you don't, There's 4 and 4 Hailey, they match up perfectly.
T: You can draw right on the overhead if you need to, Kayla and Hailey.
Kayla: Okay. So you've got this first, first set here, and you want to get all that plus the corner. That takes that. Then you've got this plus that
Line 20, 18:36 corner, that plus that corner, that plus that corner.
Hailey: Oooh..
```

```
Chapter 13: Ellie Wonders if Two Equations Are the Same
Approximate Times 18:40-19:23 (Times from start of video)
Line 1, 18:42 Ellie: Would it change the equation if you just kind
    of like if you took my first one for example like if
    you did x plus 4 times 4 like would that change it at
    all.
    T: Try it
    S(unidentified): It doesn't work.
    T: So you tried X plus four times four?
    Elle: Yeah.
    T: Why wouldn't that work?
Line 10, 19:02 Elle: I don't know. Well, I graphed like, the
    regular one and it ended up like normal on that, and
    then the other way kind of ...
    T: So the graphs were not the same.
    Heather: That's why it's not working.
    T: You're timesing the plus four also the way Elle
    said it?
    T: So you have to do the multiplication before you do
    the addition.
    Heather: Yeah.
```

```
Chapter 14: Audrey Proposes y = 2(x + 2) + 2x
Approximate Times 19:24- 20:02 (Times from start of video)
Line 1, 19:26 Audrey: That one is crazy.
    T: I think you're right, Elle.
    T: That one's crazy? Tell us about it
    Audrey: Yeah.
    Audrey: Okay. Um, well first, the X plus two, um,
    would get me this and these two corners, so it would
    be like that, and then you'd times it by two, so then
    you'd get this one also, and then you'd do X times
    two which would get you these two, and then you get
Line 10, 19:58 it.
    S(unidentified): add the four corners.
    Audrey: No, you wouldn't need to get a corner.
    S(unidentified): 'Cause she already got'em in the
    ...
    Audrey: Yeah.
```

```
Chapter 15: John Thinks There Are An Infinite Number
Approximate Times 20:03 - 21:26 (Times from start of video)
Line 1, 20:04 T: Do you think there are more?
    Class: No. Yeah, probably.
    T: John thinks he might have another one.
    John: There is an infinite amount that you can do.
    T: There's what?
    John: There's an infinite amount because -
    T: Why?
    John: You can do basically four times any number and
    get the answer and then you can do that answer times
Line 10, 20:26 X and then divide it by what you timesed your four by
    and then add a four.
    T: Could you show what you were saying up here
    because I got lost when you said divide.
    S: Huh? We're dividing?
    John: Well, I won't really be able to draw it as a
    square but -
    John: So, you could basically do like sixteen X
    divided by four plus four, because four times four
    equals sixteen.
Line 20, 20:57 Class: Whoa. Okay. That's pretty sweet.
John: You could even do like thirty-two X divided by
eight plus four, because four times eight equals
thirty-two.
S: And then you could just keep going.
John: Yeah.
S: Divide by -
T: Try it. Does that work?
Class: Yeah, yup.
T: How, how can I test it to see, 'cause John said
it'd be hard to draw a picture of that, so how can I
test it to see if his idea's okay. Let's try graphing
and tabling those.
```


Line 50, 23:51

Line 60, 24:16

Line 70, 24:41

Line 80, 25:00

```
Line 40, 23:22 T: Could this one be turned into four X plus four?
Class: Yeah.
T: That one's nasty looking. How do you get four X plus four out of that?
Class comments: [Unintelligible]
T: I think somebody's gotta show this one to me, 'cause I'm not seeing that.
John: You can take this, X plus two, so when you times that by two you get two X plus 4, if you
T: Could this one be turned into four X plus four?
multiply all this stuff by two, by two, and then with
this you have two X and you [01:23:55;02] can join
these together to get four X plus four.
T: Aaaah. Is that what you were saying, Hailey,
something like that?
Hailey: Yeah. I just, you know, like, change like
to.. the numbers... to...
T: So maybe there is a way to make all of these four
X plus four. Why don't you look at the rest of them
with your group and see if you can make the rest of
them four X plus four.
Elle: We don't have to do it to the divided ones, do
we?
T: Could you?
Elle: No. I don't -
T: If you did sixteen -
Elle: Sixteen divided by four is four, so it'd be
four X plus - oh, I get it.
T: She's got it.
T: How about the next one? And you said really these
were the same thing, 'cause it's a square. Will this
one become four X plus four?
Brittany: All you're doing is adding these two
together and you get four.
S(unidentified): Love your X.
Jon: Oh, yeah.
Brittany: And here's your four, so you're adding
four.
Jon: She Just proved me wrong.
T: Oh, because you're adding these, and not
multiplying them.
```

```
Chapter 17: The Teacher's Reflection
Approximate Times 25:00 - end (Times from the start of the video)
[No transcript available.]
```

